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In recent years, deep learning has shown great potential in transforming various 
fields including healthcare. With the abundance of healthcare data being generated 
every day, there is a pressing need to develop efficient algorithms that can process 
and analyze this data to improve patient care and treatment outcomes.

Handbook of Deep Learning Models for Healthcare Data Processing: Disease 
Prediction, Analysis, and Applications covers a wide range of deep learning 
models, techniques, and applications in healthcare data processing, analysis, and 
disease prediction, providing a comprehensive overview of the field. It focuses on 
the practical application of deep learning models in healthcare and offers step-by-
step instructions for building and deploying models and using real-world examples. 
The handbook discusses the potential future applications of deep learning models in 
healthcare, such as precision medicine, personalized treatment, and clinical decision 
support. It also addresses the ethical considerations associated with the use of deep 
learning models in healthcare, such as privacy, security, and bias. It provides technical 
details on deep learning models, including their architecture, training methods, and 
optimization techniques, making it useful for data scientists and researchers.

Written to be a comprehensive guide for healthcare professionals, researchers, 
and data analysts, this handbook is an essential need for those who are interested in 
using deep learning models to analyze and process healthcare data. It is also suitable 
for those who have a basic understanding of machine learning and want to learn 
more about the latest advancements in deep learning in healthcare.
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Preface
Deep learning is a subset of machine learning that uses neural networks with mul-
tiple layers to analyze complex data. In recent years, deep learning has shown great 
potential in healthcare, particularly in areas such as medical imaging, electronic 
health records, genomics, and drug discovery. Deep learning models can analyze 
large amounts of data and identify patterns that are difficult or impossible for humans 
to detect. These models can also learn from data and improve their predictions over 
time. This handbook provides an introduction to deep learning models and their 
architecture. It covers a range of deep learning models, including convolutional neu-
ral networks, recurrent neural networks, and generative adversarial networks. The 
handbook also explores applications of deep learning in healthcare such as medical 
image analysis, clinical decision support, disease diagnosis and prediction, and drug 
discovery. In addition to introducing deep learning models and their applications, 
this handbook provides practical guidance on how to build, train, and deploy deep 
learning models in healthcare. It includes case studies and examples of real-world 
applications of deep learning in healthcare, as well as discussions on the ethical 
and legal considerations surrounding the use of deep learning in healthcare. The 
target audience for this handbook is professionals, researchers, and students who are 
interested in deep learning models and their applications in healthcare. It is suitable 
for those who have a basic understanding of machine learning and want to learn 
more about the latest advancements in deep learning in healthcare. It is also useful 
for healthcare professionals who are interested in using deep learning models to 
improve patient outcomes.

The book consists of 18 chapters that describe perspectives of deep learning mod-
els for health data processing.

•	 Chapter  1, “Deep Learning Models for Electronic Health Record Data 
Analysis,” discusses how EHR data is a valuable resource for developing 
evidence-based information pertinent to patient care.

•	 Chapter 2, “Disease Prediction Models Using Machine Learning,” offers 
a thorough investigation of machine learning’s use in detecting and pre-
dicting a variety of diseases, including COVID-19, thyroid, cardiovascular 
disease, chronic kidney disease, breast cancer, alopecia areata, brain tumor, 
chronic heart disease, diabetes, hepatitis, Alzheimer’s, and dengue.

•	 Chapter  3, “Deep Learning Approaches for Diagnosing Alzheimer’s 
Disease: A Comparative Study of ResNet50, CNN, and MobileNet,” dis-
cusses deep learning models for early and accurate Alzheimer’s diagnosis, 
with ResNet50 achieving overall accuracy of 92%.

•	 Chapter  4, “Sentiment Classification Analysis Using Deep Learning 
Network Models,” analyzes how the different natural language processing 
techniques with Neural models affect the performance of the model.

•	 Chapter  5, “Predictive Modeling of Interactions between Herbal and 
Conventional Medicines,” discusses mathematical models, including 



x� Preface

machine learning algorithms, pharmacokinetic/pharmacodynamic mod-
els, and network analysis approaches used to predict and characterize these 
drug interactions along with clinical trials, pharmacological databases, and 
computational simulations used to develop and validate predictive models.

•	 Chapter 6, “Revolutionizing Breast Cancer Detection: A Shallow Neural 
Network Approach for Accurate Classification of Calcifications and 
Masses in Mammographic Scans,” deploys a shallow neural network 
which uses artificial 2-D Convolutional Network Layers to classify the 
lesions and calcifications present in the mammographic scans and proves 
that the model is as comparable to those of which used deep networks and 
transfer learning models to classify suspected lesions into calcification and 
masses which are an important marker to determine whether the patient 
need a biopsy or not.

•	 Chapter  7, “Artificial Intelligence-Based Automated Detection of 
Rheumatoid Arthritis” provides a comprehensive review of AI-driven diag-
nostic tools, focusing on image segmentation, feature extraction, and clas-
sification methods applied to hand radiographs and ultrasound images.

•	 Chapter 8, “Medical Imaging Analysis Techniques: Advances, Challenges, 
and Future Directions,” aims to provide a comprehensive review of the 
advancements in medical imaging analysis, highlighting the challenges and 
future directions in this field.

•	 Chapter  9, “Modeling the Transtheoretical Model for Health Behavior 
Stage Analysis: Tool Development and Testing,” discusses the application 
of recognized behavior change models, such as the Transtheoretical Model 
of change, as tools for assessing and predicting behaviors, while also illus-
trating how their constructs can effectively promote behavior change mod-
eling & assessment in health contexts.

•	 Chapter  10, “Decoding Medical Language Using Optical Character 
Recognition and Large Language Models,” proposes an innovative solu-
tion by integrating optical character recognition (OCR) which extracts the 
texts from medical documents and large language models (LLMs) further 
interpret and decode complex medical terminology within reports/medical 
documents to understand them better.

•	 Chapter 11, “A State-of-the-Art Model for Drug Classification Using Image 
Recognition” integrates deep learning, computer vision, and blockchain to 
enhance drug classification accuracy, authentication, and counterfeit pre-
vention in pharmaceutics.

•	 Chapter  12, “Transforming Healthcare with Smart Contracts: A Focus 
on Quality of Service” provides a research methodology for implement-
ing Blockchain-based Smart Contracts in healthcare involves a structured 
approach, including a literature review, defining objectives, selecting rele-
vant datasets, data preprocessing, choosing a suitable Blockchain platform, 
developing smart contracts, integrating the datasets, testing and evaluating 
the solution, addressing ethical considerations.

•	 Chapter  13, “A Prototype Model for Detecting Skin Diseases Using 
Deep Learning and Image Recognition,” discusses how prototype model 
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leveraging CNNs for automated, accurate detection of face and skin dis-
eases, enhancing early diagnosis and healthcare accessibility.

•	 Chapter 14, “A Brain-Controlled Arduino-Based Robot System,” explores 
the development of an innovative controller that enables users to control 
robots using their thoughts, thus significantly enhancing mobility and 
autonomy for individuals with disabilities through advanced EEG signal 
processing and machine learning algorithms.

•	 Chapter  15, “A Transfer Learning-Based Framework for Skin Cancer 
Evaluation,” employs two distinct pretrained deep models: EfficientNetV2 
and ViT-B16. Through rigorous hyperparameter tuning, features are 
extracted from skin tumor images to enhance classification accuracy.

•	 Chapter  16, “Healthcare Reimagined: AI’s Impact on Diagnosis and 
Treatment,” provides a comprehensive overview of AI applications in 
healthcare, including diagnostic tools, predictive analytics, remote moni-
toring, drug discovery, and ethical considerations, illustrating its transfor-
mative impact on patient care and system efficiency.

•	 Chapter  17, “Advanced Long Short-Term Memory for Aspect-Based 
Sentiment Classification,” discusses how embedding-LSTM captures senti-
ment towards the target aspect within the input sequence, with accuracy 
varying depending on the dataset, task, and baseline models.

•	 Finally, Chapter  18, “Patch-Based Medical Image Classification Using 
Convolutional Neural Networks,” examines the fundamental concepts, 
advances, methodologies, and motivations and challenges behind patch-
based approaches.

This book is intended for both academia and industry. Postgraduate students, 
Ph.D. students, and university and institutional researchers involved in deep learning 
models for health data processing will find this compilation useful.

The editors acknowledge the professional support received from CRC Press and 
express their gratitude for this opportunity.

Readers’ observations, suggestions, and queries are welcome,

Ajay Kumar
Deepak Dembla

Seema Tinker
Surbhi Bhatia Khan
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Deep Learning Models 
for Electronic Health 
Record Data Analysis

Wasswa Shafik

1.1  INTRODUCTION

The electronic health record (EHR) is an essential data resource that improves medi-
cal decision-making and health service delivery monitoring and allows for develop-
ing predictive models for early risk scoring, among other applications. EHR-based 
predictive models have improved with the use of deep learning (DL) techniques, 
which excel when there are large amounts of data and potentially complex relation-
ships between input features and the target prediction. However, EHR data possess 
unique characteristics such as complicated dependency structures between events, 
event frequency, and missing patient subpopulation data, to name a few issues (Lee 
et al., 2024). These dimensions of EHR data have led to the use of DL methods that 
are not typically used in standard image, speech, and natural language processing 
but instead are specifically designed to address the demands of EHR data analy-
sis. DL can be particularly useful in developing predictive models with EHR data 
because

•	 the patterns inherent in EHR data are unknown, and deep learning models 
can automatically extract, learn, and utilize these complex patterns;

•	 predictive performance typically improves substantially with additional 
labeled examples, and large health systems can provide substantial volumes 
of labeled EHR data; and

•	 the availability of labeled EHR data for training final predictive models can 
be limited, and deep learning models can first learn models using readily 
available proxy labels and additional unlabeled data through semi-super-
vised learning.

However, domain experts should carefully consider the inherent nature of EHR data, 
as well as the uncertainty and risk associated with predictive decision-support tools, 
when developing and deploying DL models for applications that directly impact 
patient outcomes.

EHRs are digital versions of the paper charts in a clinician’s office. They contain 
the medical and treatment history of the individual’s care in the form of administration 
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from one practice (Qu et al., 2024). The EHR is more than just a patient’s history; 
it facilitates evidence-based decision-making, automates and streamlines provider-
related processes, and communicates information to different clinical teams. EHR 
data sources are increasingly valuable for secondary uses, including health research, 
both in the current domain of clinical research and evaluation of health systems and 
public health. They are also important for supplementing both health and non-health 
data from other sources to support emerging health data research and generate new 
knowledge in medicine (Shafik, 2024h).

At the same time, the complexity of EHR data comes with the problems associ-
ated with big data. The high data volumes, processing speeds, and variety make 
digital analysis expensive and non-tractable, but the traditional manual methods of 
statistical analysis are too slow for rapid decision-making. As a result, we are in the 
midst of a “data-driven” movement that is improving the statistical power of scien-
tific research by promoting the integration of EHR and the creation of repositories 
that can be used and manipulated by data analysts (Boudali et al., 2024).

1.1.1  Definition and Importance of EHRs

An EHR refers to patient health information recorded in digital format, including 
patient demographics, medication, medical history, test results, and imaging, and 
can be shared across different healthcare organizations. EHRs can include all clini-
cal and administrative data such as life conditions, residence, social care, diagno-
sis and treatment goals or plans, laboratory test results, medications, and treatment 
reports. In modern healthcare systems, the accuracy of data and its accessibility can 
greatly affect patient care (Feng et al., 2024).

Traditionally, patients’ health records were kept in paper form, but these were 
easily lost and could not be copied duplicated unless the patient chose to do so; 
therefore, patients seeking service at different health care providers could not eas-
ily supply their medical histories. In contrast, EHRs are retained digitally and have 
high accessibility. This benefits practitioners who have embraced this way of life, 
and large individual or group practices are now incorporating them due to regulatory 
pressures (Shafik, 2024g). Review of health records for patient care is coordinated in 
clinical settings. Keeping these records digitally enables tracking patterns and dis-
eases using big data and electronic health, which paves the way for fantastic potential 
in new dimensions and avenues for diagnosis and treatment.

1.1.2 C hallenges and Opportunities in EHR Data Analysis

EHRs are also essential sources of clinical evidence because they provide informa-
tion about clinical protocols. Analysis of EHR data can reveal risk factors and iden-
tify relevant features and thereby support clinicians’ decisions and improve patient 
outcomes. However, being full of clinical-specific terms, procedures, and activities, 
EHR data are highly complex and therefore hard to manage. While big data analyt-
ics applications in healthcare are promising, various obstacles must be overcome 
for these applications to be successful. Some of the significant challenges are the 
complexity of the data, integration issues, and security threats (Chen & Kong, 2024).
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Data quality is another significant obstacle to achieving successful data mining 
and analysis; inaccurate data are an obvious problem as inaccuracy can lead to incor-
rect conclusions. However, an even more significant problem is bad insights, apply-
ing correct knowledge to incorrect data. Today, only more comprehensive knowledge 
about individual health at the population level can deliver long-term preventive per-
spectives on the impacts of national health activities (Shafik, 2024c). To date, clinical 
studies have been the most used method for knowledge generation. Along with stud-
ies in nutrition, farming, and food, these methods are crucial but often are not suffi-
cient. And here is the vast potential of EHR system database analyses. Given enough 
data, several novel approaches can be explored for their contribution to better health. 
The extensive use of data, international in scope, includes predictive analyses and 
DL analytics. In such analyses, we study the relationship between all the collected 
features so that we can say: “If I know feature ‘A,’ I do not need feature ‘a,’ as much 
information is contained in the first feature” (Kumar et al., 2024).

1.2  FUNDAMENTALS OF DEEP LEARNING

DL has achieved great success in dealing with large and complex datasets and pro-
vides a powerful approach to handling healthcare data, particularly EHRs, among 
other expert systems illustrated in Figure 1.1. Fundamentally, DL models are similar 
to traditional machine learning approaches in which models learn optimal features 
for downstream tasks. However, DL has more representation power than traditional 
machine learning methods and endows researchers with more analytic freedom. 
Unlike traditional methods limited to feature extraction from machine-readable 
inputs, DL models can operate directly on raw data, such as images, audio, and text 
(Goldstein et al., 2024). Consequently, the features learned by high-capacity models 
have various abstraction levels, ranging from simple features to more complex repre-
sentations, making predictions based on those features significantly more accurate.

These advantages in representation learning make DL a fitting choice for health-
care data with complex patterns. At the core of all DL models lies a neural network. 
Conceptually, a neural network is a mathematical representation of the human brain 
comprising interconnected nodes or neurons. Each connection between nodes has an 
associated weight that can be modified according to input data. When given input 
data, the network performs a series of transformations through each layer, where the 
input data is multiplied with weight matrices, and a nonlinear function is applied to 
introduce nonlinearity to the model (Shafik, 2024e). The process yields one or more 
outputs intended for classification, regression, or other tasks. This basic structure 
can be adapted to many different neural network architectures, such as recurrent and 
convolutional neural networks, each with its specific applications.

1.2.1 N eural Networks

Neural networks are computing systems loosely modeled after the biological neu-
ral networks of animal brains and mainly comprise neurons, synapses, and axons. 
When external inputs stimulate neurons in a layer, they fire in unison and transmit 
messages to other neurons within the layers. Output from one layer of neurons is 
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FIGURE 1.1  Categories of expert systems.

provided as input for the next layer. The strength of the connections among neurons 
is adjusted in response to strategies like backpropagation to minimize a specific 
error using an annotated ground truth: the learning process. All neurons in one layer 
are connected to the other neurons in the next layer, giving multiple classes of lay-
ers similar to the biological systems (Afshar et al., 2023). Orientation for the flow of 
knowledge for information is often referred to as feedforward.

Neural networks consist of neurons, weights, and layers; together, these concepts 
are utilized to build various architectures. Neural networks are composed of three 
key components: neurons, the activation function, and layers. A neuron is a com-
putational unit that takes multiple inputs and produces an output after processing it 
mathematically or using an activation function. Each input is multiplied by a weight 
and summed, followed by adding a bias value. An activation function in a neural net-
work architecture is a key component of a neuron responsible for its output (Shafik, 
2024e). This function determines whether and how much signal is transmitted to 
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the next layer depending on the input’s value. And a layer is a collection of neurons 
that executes specific feature transformations or data processing functions; multiple 
layers are connected to compose a neural network model. There are three common 
layers in neural networks: input, output, and hidden; these layers are interconnected 
using links and represent the neurons’ inputs and outputs. When a network contains 
multiple hidden layers, it is called a deep neural network. In addition to the above-
mentioned components, researchers have described several key advanced architec-
tures in neural networks for answering specific health-related questions (Hossain 
et  al., 2023). Before introducing these advanced architectures, we first introduce 
training and learning in neural networks, which make up the core components.

1.3  DEEP LEARNING IN HEALTHCARE

Deep learning technologies have shown tremendous potential in healthcare. They 
have the power to abstract the complex coding algorithms beneath end-to-end train-
ing, thus contributing to the automation of routine processes and ultimately improv-
ing clinical decision-making. Deep learning augments the quality of healthcare and 
preventive medicine and significantly reduces costs. The technology has shown 
applications in numerous domains of healthcare knowledge, particularly for medical 
imaging analytics and content personalization. Deep learning has been doing quite 
well in classifying medical images (Feng et al., 2024).

Deep learning in medical image analysis comes in handy when there are big data 
to help train systems, and current medical and healthcare image archives and collec-
tions are rapidly increasing, thus comprising considerable automated medical imag-
ing datasets (Shafik, 2024f). Deep learning with medical images increases accuracy 
in diagnosis, treatment, and prescription; results have shown that DL produces radi-
ology-caliber accuracy in diagnosing pathology and predicting patient outcomes, 
superior to traditional methods. In fact, DL algorithms have been found to enhance 
clinical decision support for automated mammographic breast cancer identification 
over traditional image interpretation methods. Integrating DL into clinical imaging 
for patient health recommendations shows great potential for improving patient out-
comes (Ashfaq et al., 2019). Indeed, incorporating EHR data into predictive systems 
can allow for personalizing medicine via the technologies presented in Figure 1.2.

1.3.1 M edical Image Analysis

In healthcare, diagnosis, disease progression monitoring, and treatment planning 
have long relied on medical images as essential data. The diversity of tissues and 
symptoms is the driving force behind the diverse modalities and resolution of medi-
cal images. Interpreting the characteristics of medical images was a significant chal-
lenge for healthcare workers. Magnetic resonance imaging (MRI) and computed 
tomography (CT) visualize the fine internal structure of the human body in cross-
section with excellent spatial resolution. Ultrasound provides a visual diagnosis for 
affected soft tissues, organs, and pathologies with dynamic movements in the heart-
beat and during muscle contraction (Yao et al., 2018). Positron emission tomogra-
phy and single-photon emission computed tomography offer molecular images for 
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systemic diseases such as cancer, heart disease, Alzheimer’s disease, and Parkinson’s 
disease, with low soft-tissue contrast resolution and high noise. Since 2012, DL for 
images, so-called convolutional neural networks (CNNs), has been the mainstream 
approach for visual recognition and detection including of medical images. Various 
DL models for medical images have been designed to reveal complex patterns that 
were often missed through traditional, empirical, heuristic rules and medical imag-
ing procedures (Kumar et al., 2024; Shafik, 2024a).

Deep learning models for medical imaging have consistently demonstrated 
human-level or even superhuman-level performance that prevails over well-designed 
traditional machine learning models in numerous applications. For example, a 
densely connected CNN outperformed radiologists for lesion detection in CT images. 
Ensemble models of Inception CNN and ResNet CNN were better than radiologists 
in identifying the absence of optic radiation in diffusion tensor MRI for lateralizing 
the epilepsy side. Both Xception CNN for mammographic lesion classification and 
DL for breast ultrasound gave high diagnostic accuracy that reduced false-positive 
cases and unnecessary breast biopsy (Chintala, 2024).

Disease segmentation in medical images is feasible with deep-learning mod-
els. For instance, PIXI-Net for joint detection and segmentation of organs at risk in 
pelvic CT outperformed U-Net in combination with a traditional stepwise cascade. 
Deep learning models specifically designed for medical images can also be com-
bined with electronic health record (EHR) data from clinical databases, large-scale 
studies, or social media to assist disease diagnosis and risk profiling (Shafik, 2024a). 
The Siamese neural network DL model, when used with texture images, detected 
the progression of Alzheimer’s disease based on brain images of amyloid plaque, 
and 3D U-Net improved the diagnostic accuracy for treatment planning of glioblas-
toma based on MRI. However, such DL models trained on publicly shared clinical 
or research databases might not readily generalize to the local patient population or 
imaging equipment (Mohsen et al., 2022).

FIGURE 1.2  Deep learning technologies that support healthcare. IoT: Internet of Things.



Deep Learning Models for Electronic Health Record Analysis� 9

1.3.2 C linical Decision Support Systems

Many models have been proposed for clinical decision support systems (CDSSs). 
CDSSs are used in examining and analyzing patient information, predicting patient 
care requirements, offering recommended treatment, and so on to provide evidence-
based conclusions, advice, or recommendations based on patient data. Most exist-
ing DL-based approaches have integrated EHR repositories to discover new clinical 
features or build different models for various tasks that update in real time in each 
approach (Negro-Calduch et al., 2021). Some models provide evidence-based rec-
ommendations using smart devices (see Figure 1.3).

Along with this, one of the advantages of using real-time EHR data is the ability 
to explore the intrinsic relationships between time-based data and outcomes; that 
is, CDSSs can predict possible outcomes for patients. Capturing relationships and 
patterns in patients’ data for intelligent decision-making is the goal of designing 
DL-based approaches. The ability of doctors and managers to understand, assess, 
and interpret the results of these models is critical to the success of CDSSs (Shafik, 
2024b, 2024d). The most important aspect of these tools is that they are human cen-
tered, they enhance complex medical practices, and they contribute to the personal-
ization and individualization of clinical practice.

EHR databases also allow deep analysis of patient care. The large volumes and 
high dimensionality of patient EHR data have allowed for developing artificial 

FIGURE 1.3  Smart healthcare devices.
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intelligence approaches that have extended the efficiency of DL approaches (Boudali 
et al., 2024). The user interface is an essential factor in physicians’ acceptance of 
DL-based CDSSs. Although model transparency might not seem relevant to users, the 
issue is critical in the judicial field for maintaining patient confidence. Additionally, 
protecting the confidentiality and privacy of patient information is a growing con-
cern that requires the attention of the medical community (Afshar et al., 2023).

1.3.3 N atural Language Processing in Healthcare

Several subfields of natural language processing (NLP) contribute to the analysis of 
health-related texts, including named entity recognition, concept mapping, and rela-
tion extraction. Named entity recognition (NER), a core component of many NLP 
systems, involves identifying specific classes of terms, such as people’s names, dis-
eases, or medical procedures. In the clinical domain, NER systems will typically 
target signs and symptoms, diseases, names of drugs, and procedures. Entity map-
ping involves linking identified mentions to a standardized terminology or ontology 
(Gong et al., 2021).

Disease normalization is the task of mapping diseases identified in clinical texts 
to unique identifiers in a standardized term set. Drug mapping is the task of identi-
fying drug mentions in clinical narratives and then mapping the mention to a tradi-
tional drug name. Since drugs are often referred to by their brand name or generic 
name, an NLP system needs to recognize these names and map them to the under-
lying or generic name, which can then be used in the terminology. Finally, relation 
extraction addresses the recognition of structured information from texts that refers 
to relationships between pairs of entities (Guo et al., 2020).

Traditional NLP methods do have their limitations when applied to non-research 
medical records due to many yes-or-no questions and checkmark lists in the records. 
The traditional models work well with structured tables and paragraphs that are 
integral to research papers but not so easily with the more irregular and specialized 
makeup of EHR documents. The presence of large numbers of potentially noisy 
fields can add complexity to the models, as a citation needs to be extracted from 
a large number of fields, not all of which may exist but would be expected to for a 
research-style document. However, it is important to note that these limitations come 
from traditional NLP models, and substantial improvement is being made in the area 
of emerging DL models (Guo et al., 2021).

1.4  DL ARCHITECTURES FOR EHR DATA ANALYSIS

As explained in the previous section, the increasing volumes and complex nature of 
healthcare data have prompted the development of many advanced machine learning 
models tailored specifically for EHR data. In particular, DL models have been draw-
ing growing interest for their high-level feature representation ability.

For EHR data with a mixture of categorical and numerical variables, recurrent 
neural networks (RNNs) have been shown to be an effective architecture leveraging 
the sequential features of EHR data. RNNs can handle sequential data features that 
preserve and propagate important information across periods, which is useful for 
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EHR data analysis because clinical data, including medical codes, medications, and 
notes, have a natural temporal sequence (Alaboud et al., 2023). Specifically, long 
short-term memory (LSTM) networks, which are an RNN model that can handle the 
problems of long-term dependencies, have been widely adopted for EHR data analy-
sis. This is because of their ability to handle and store information farther back in 
the past, addressing the vanishing gradient problem, which RNN models suffer from 
due to the backpropagation through time optimization (Si et al., 2021).

LSTM architecture has been employed for various outcome analyses such as both 
disease and phenotype classification or subtyping, patient disease trajectory analysis, 
patient readmission/hospital length-of-stay prediction, and patient phenome review. 
These results suggest the potential of deep EHR architectures to reveal unknown 
patient subtyping and disease progression patterns and to be harnessed for future 
clinical research and developing CDSSs. Many off-the-shelf architectures developed 
for NLP and other types of data are less suited to capturing the symbolic complexity 
in healthcare data (Negro-Calduch et al., 2021). Therefore, numerous dedicated DL 
architectures specific to healthcare data formats have emerged.

1.4.1 RNN s

EHRs feature time-series patient data, and RNNs, a DL model, retain what they’ve 
seen over time in data sequences, such as diabetes disease progression; the memo-
ries are maintained through the hidden state of the layers. Because of this design, 
RNNs are well suited to analyzing sequential data such as EHR data. RNNs retain 
the memory of the sequence even with long inputs, whereas standard DL tech-
niques used for long-sequence inputs do not necessarily perform well over the entire 
sequence due to the vanishing gradient problem, where there is little to no gradient 
at the earlier layers of the network in the backpropagation process (Chintala, 2024). 
This is because the gradient becomes very small after being multiplied layer by 
layer in the network.

One solution to this issue is gating mechanisms that allow the gradient to be eas-
ily backpropagated without being altered, as in LSTM and gated recurrent units. 
One major strength of RNNs is that they can learn complex mapping between input 
and output without having to align the sequences. During training, RNN inputs are 
not only the sequences of interest but also can include the learned mapping scores 
for each input sequence with the ground truth data. One of the major challenges in 
using RNNs is that they can become very slow in training deeper layers with a larger 
number of RNN cells, as they have to learn to backpropagate and update time steps 
in a more computationally complex manner (Shickel et al., 2018).

One common solution to this is gradient clipping, which imposes a threshold on 
the maximum gradient and affects where the gradient is backpropagated through 
the network. RNNs can be replicated such that more than one RNN can learn the 
sequences forward and backward at the same time. This increases the surface area 
for the network to learn new features in the input sequence. These are called bidirec-
tional RNNs. Stacked RNNs can model data at both coarse parallel level and at finer 
resolution (Yao et al., 2018). Figure 1.4 illustrates how EHR data can be integrated 
into the Internet of Things to improve patient care.
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1.4.2 LSTM  Networks

LSTM networks are specialized neural networks developed to handle long-range 
dependencies and improve performance for learning tasks where the gap between 
related information can be substantial. As such, LSTMs are RNNs specifically 
designed to improve the limitations of the latter in learning from sequential data 
containing time lags or time gaps. EHR data is fundamentally time dependent and 
full of events that can result in a direct or delayed impact on a patient’s health state, 
and LSTMs are widely employed DL architectures in health informatics and EHR-
based analytics (Hossain et al., 2023) because they capture patient data over periods 
as long as decades.

LSTMs contain the unique architecture of memory cells along with gates, which 
transform input features into parameters for modeling sequential patterns in the 
data. More specifically, they utilize three computational gates—input, forget, out-
put—each of which serves a distinct purpose in mitigating potential problems in 
RNNs such as the vanishing gradient (Feng et al., 2024). LSTMs have specifically 
shown promising results in both short-term and long-term prediction of patient out-
comes, as well as in understanding temporal trends in healthcare data, and they 
remain critical architectures to be explored in healthcare delivery and public health 
domains. Notably, successful applications of LSTMs to EHR-based analytics require 
careful training and tuning of model hyperparameters, including the number of hid-
den units or memory cells, learning rate, and sequence length, as well as architected 

FIGURE 1.4  Applications of the medical Internet of Things.
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configurations such as regularization techniques, number of network layers, and 
parameters (Ashfaq et al., 2019).

1.5  PREPROCESSING EHR DATA

EHRs contain patients’ health status information obtained during visits and treat-
ments. Before DL models can be directly applied to EHR data, data visualization 
and preprocessing are necessary to ensure a complete analysis and better perfor-
mance of the model. Data visualization and preprocessing improve data quality and 
make the data more compatible for the analysis. One of the most necessary data 
preprocessing steps for EHR is either normalization or standardization, which are 
real value transformations.

1.5.1  Data Cleaning

To ensure the proper performance of DL models in analyzing EHR data, both the 
clinical and financial aspects of the data must be authenticated. The first critical step 
in machine learning model building is data cleaning, and researchers have established 
data extraction, transformation, and loading as the appropriate data cleaning steps.

The success of DL depends on data quality; if the data contain errors, the final 
result will be inaccurate (Landi et al., 2020). Central key principles of data prepara-
tion are as follows: accuracy, uncoded values, and missing values. Accuracy involves 
record matching and deduplication, resolving and finding records that are redundant 
or that refer to the same original data entity. Another crucial factor in data cleanliness 
is uncoded values. Data can lack codes for specific values, and values can be found 
only in unstructured formats (Ashfaq et al., 2019; Shickel et al., 2018); data cleaning 
enables structuring unstructured data. Finally, missing values are also relevant for 
deciphering EHR data; applying domain knowledge can be beneficial for identifying 
and addressing missing data. In brief, data extraction, transformation, and loading 
are rigorous data-cleaning processes that significantly influence the results of DL 
models. Good data can be used to create relevant and accurate information to sup-
port decisions (Guo et al., 2021).

1.5.2 F eature Engineering for EHRs

Researchers analyzed heart patients’ medication prescription records to predict who 
might need surgery versus who can continue with medication. They examined treat-
ment patterns to identify patients’ compliance with clinical practice guidelines and 
physicians’ preferences. By using the a priori algorithm, they found common medi-
cation subsequences. They then applied two models to treat patients’ disease status 
as a Markov model, calculating probabilities for disease progression or deterioration 
or treatment adherence. They also considered medication dosage, dispensing period, 
duration, and compliance to construct features for predicting worsening disease sta-
tus (Guo et al., 2020).

Other researchers extracted patients’ medication information that appeared in 
one year with WHO Anatomical Therapeutic Chemical codes. Then, they used Cox 
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proportional hazard models to characterize patients’ disease status using association 
rule feature selection. Subsequently, they compared the performances of support 
vector machines, lasso, classification and regression trees and naïve Bayes to predict 
patient’s disease status (Gong et al., 2021).

There are several reasons for this step. First, EHR features can vary in time 
periods, units, and value ranges, potentially causing significant features to be over-
looked. Second, the actual ranges and scales of these values affect the effectiveness 
of DL training algorithms. The data cleaning I  just discussed involves correcting 
outlying values generated from the entry of incorrect data and missing values. When 
preprocessed EHR data do not match the data analysis requirements, the efficiency 
of the used learning model decreases (Guo et al., 2021; Si et al., 2021). Deep learn-
ing algorithms are highly sensitive to input value, and this sensitivity is not ideal 
for imbalanced EHR data. Additionally, preprocessing steps such as normalization 
and standardization can sometimes conflict with the DL model. Researchers in one 
study focused on preprocessing techniques tailored to specific data types or objec-
tives. The data structure and the chosen preprocessing method dictated which of the 
two preprocessing methods was more appropriate. The need for preprocessing data 
arises from the analytical requirements, the theoretical framework, and the experi-
mental process in EHR data analysis (Chintala, 2024).

1.5.3 N ormalization and Standardization

Data normalization and standardization are two widely adopted steps in preprocess-
ing for EHR data analysis using DL models. However, these techniques are normally 
used interchangeably. Normalization is the process of rescaling data to a specific 
range between 0 and 1 and is generally preferred when the parameters are compa-
rable and can be modified by scaling to the same initial range; normalization can be 
converted to standardization in some cases. Conversely, standardization is the pro-
cess of converting data such that the data’s mean is zero and the resultant data has a 
variance of 1, which is very efficient in reducing biases in the learning process. The 
input data for DL models should be rescaled so that they have the same format for 
the DL to converge efficiently (Mohsen et al., 2022).

There is no rule about when to use normalization or standardization with which 
datasets. For healthcare data used in diagnosing diseases using deep feature repre-
sentation, it is generally. good practice to normalize the data before feeding it into 
the DL models to ensure optimal performance. In some models, standardization can 
lead to lower validation loss and faster convergence (Feng et al., 2024). Additionally, 
standardization excels in reducing the required number of iterations for model train-
ing, also yielding fast convergence.

1.6  MODEL EVALUATION AND INTERPRETABILITY

1.6.1 M odel Evaluation

Appropriate performance metrics must be developed and used to assess how well 
a model makes accurate predictions. Model evaluation typically employs various 
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metrics such as accuracy, sensitivity or recall, specificity, and AUC (area under the 
[receiver operating] curve) for the performance of models that find the optimal trade-
off between sensitivity and 1-specificity (the false positive rate) for a given test value. 
The AUC is the most important parametric measure of the performance of a diag-
nostic tool; models with an AUC greater than 0.7 are considered predictive. Other 
performance metrics include precision, F1 score, positive and negative predictive 
value, and the precision–recall curve. A  confusion matrix, also known as a one-
hit spot plot, summarizes a matrix between true positive and true negative rates 
for a criterion or between true positive versus false positive rates (Chintala, 2024; 
Goldstein et al., 2024).

When a model’s prediction or classification performance is measured via such a 
misclassification or confusion matrix, performance metrics like sensitivity, specific-
ity, error rates, and accuracy can be derived for different cut-off points. In this way, 
models’ global performance can be evaluated without restrictions to any particular 
threshold or cut-off value; models fit by standard training strategies on small datasets 
can be easily overfit. Cross-validation is often employed for robust model evaluation 
and comparison. For instance, k × m cross-validation on a set of N points involves 
dividing the set into k mutually exclusive and equally sized blocks, each denoted by 
Si, and repeating a model’s tuning and fitting m times afresh. Comprehensive results 
about the model based on evaluation, confirmation, and validation can be drawn 
based on its broadly aggregated performance (Mohsen et al., 2022; Negro-Calduch 
et al., 2021). From a system perspective, it is also of interest to evaluate a model’s 
performance on class-specific criteria.

1.6.2 I nterpretability

Interpreting DL models is still challenging considering their complex black-box 
mechanisms, but understanding a prediction model’s behavior is essential for devel-
oping decision-making policies, such as predicting and intervening with preterm 
babies, and scientists have proposed many interpretability techniques that aimed to 
link the trained model’s decision process to the desired applications.

Many of these techniques are designed to either optimize the model to improve 
its interpretability or to obtain more insights from the existing features and neural 
activations. Layer activation analysis can identify sub-models that capture features 
of interest; this analysis is mainly used in computer vision because of the struc-
tural information available in images. However, in people’s clinical narratives, 
only sentences and tokenized words or plain timestamps are available, and no rule-
based relationships can be established. In analyzing a trained model with test input, 
some regression methods estimate the behavior of the response with respect to the 
explained features (Si et al., 2021).

Gradient ascent optimization can identify parts of the input data that are criti-
cal for predictions. In most hospitals, expert knowledge is crucial for understanding 
the relationship between diseases and biomarkers, which is possible with infor-
mation from mortality-prognostic models such as feature importance and con-
tribution; this expert interpretation is essential because in healthcare, lives are at 
stake. Transparency in the generated knowledge fosters mutual understanding and 
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acceptance of the results. Such explanations in healthcare help to build trust in the 
predictive models used to identify patients who might benefit from palliative care. 
Model evaluations only speak to the broad performance properties of the approaches 
(Guo et al., 2021). In summary, neural networks for survival analysis show potential 
advantages over traditional statistical methods.

1.6.3 P erformance Metrics for EHR Data Analysis Models

Selecting appropriate performance metrics is necessary for evaluating DL models 
for EHR data analysis. In this subsection, I  elaborate on key metrics that help in 
model assessment considering common affirmative metrics that provide insights into 
clinical outcomes facilitated by the models. Improvements in these metrics indicate 
beneficial optimizations at the model level. I further discuss recall and the F1 score, 
which are critical measures for clinical effectiveness when data imbalance is present, 
as is often the case with patient-specific models. The choice of performance metrics 
provides an interpretation that is consistent with the medical context. Apart from 
performance metrics, models should also be compared against a suitable paradigm 
to gauge success (Guo et al., 2020).

Using different approaches and metrics provides a general estimate of model 
performance. To evaluate the performance of a patient-specific model designed to 
predict readmission, mortality, ICU transfer, or sepsis, it is essential to consider pre-
dictive affirmative metrics such as patient-centric metrics, and AUC are essential. 
These metrics can reveal how an increase in one metric can correlate with changes 
in the others, broadening the perspective on potential clinical procedures or optimi-
zations. Model hyperparameters can be selected based on these metrics. The effec-
tiveness of the treatment selected based on the model predictions mostly depends on 
recall (Afshar et al., 2023). Low recall on the readmission dataset may have potential 
policy implications, such as informed consent.

1.7 � ETHICAL AND PRIVACY CONSIDERATIONS 
IN EHR DATA ANALYSIS

Health data is particularly sensitive, and strict ethical considerations on privacy and 
security should bind their analysis and use. Informed consent has been a long-stand-
ing ethical principle for collecting data on humans, and data ownership is a related 
legal issue. These principles must be addressed appropriately.

For using retrospective EHR data, it is essential that either patients give their 
informed consent, the data be anonymized, or approval be granted. Patient orga-
nizations, professional societies, and individual researchers have established best 
practice guidelines for managing data to mitigate harm to patients (Hossain et al., 
2023). Unsurprisingly, it is nearly impossible to contact patients to request informed 
consent, and so almost all clinical informatics research has used de-identified or 
anonymized data. Maintaining privacy and security also extends to the publication 
of clinically rich datasets that could be easily linked back to an individual. Another 
ethical issue joining the debate is how best to ensure and maintain the confidentiality 
of data when it is linked and used for secondary purposes. There is also a broader 
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question about whether patients should give up any rights to the use of their data 
upon informed consent (Ashfaq et al., 2019).

DL models must limit bias and offer the same performance across different 
patient populations to improve overall health outcomes for all. It is also crucial that 
the integration and usage of EHR data for different purposes, especially for the 
development of DL models, should comply with relevant regulations. Sharing the 
data without obtaining the necessary approvals could result in the blocking of new 
initiatives and other researchers losing access to the EHR data. Those who capture 
and store sensitive information need to validate information security practices and 
ensure that they are doing everything in their control to prevent unauthorized access 
(Goldstein et al., 2024).

Identity theft can have serious consequences including causing patients to decide 
against seeking treatment, which can result in severe damage to their health. Given 
the numerous cases of security breaches, a growing number of privacy advocates 
emphasize the need for transparency and accountability regarding data privacy mea-
sures. Techniques such as differential privacy and synthetic data aim to show how 
truly private a given dataset is and establish an upper boundary for access to a data-
set by an attacker (Negro-Calduch et al., 2021). Above all, ethics and legal concerns 
must provide a framework for innovation in healthcare analytics because without 
trust and integrity, cooperation between stakeholders is at risk.

1.7.1 E HRs and Patient Privacy

To enable the exchange of electronic health information both within and beyond 
the health care sector, it is necessary to meet combined regulatory requirements, 
including information specification and protection. This involves adhering to mini-
mum datasets and standard medical billing codes. Although user authentication is 
crucial, the privacy and confidentiality of patient information must also comply with 
institutional requirements if not covered by law. Therefore, to effectively utilize DL 
systems for healthcare tasks, the handling of EHR data must comply with relevant 
federal regulations (Si et al., 2021). It is essential to encrypt personal health informa-
tion (PHI) that is shared or transmitted outside of the specific departments or orga-
nizational units involved in a grant project, use strong passwords and single sign-on 
to eliminate the need for a password file, and change passwords annually for all 
members of a publication management team. In one study, a significant percentage 
of patients were very concerned about the privacy and integrity of their healthcare 
records, and many wanted to give consent before having their data stored and used 
(Hossain et al., 2023).

EHR data are now regularly being shared and accessible across broad networks, 
so it is particularly important to ensure the privacy and security of these data. For 
instance, physicians and other healthcare personnel are increasingly required to shift 
from merely providing care to also billing for that care; because health services are 
reimbursed based on medical codes for treatment rendered, EHRs are increasingly 
being linked to medical coding applications. Given these considerations, EHR data 
analysis must pay strict attention to compliance with federal regulations. It is impor-
tant to note that data privacy law is currently in a state of flux. Certain changes in 
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draft form have been proposed that if enacted will shift the definitions and scope of 
existing regulations (Ashfaq et al., 2019). However, as of this writing, these have not 
been laid before or approved by the US Congress.

Healthcare providers are also required to provide training on privacy and security 
including defining acceptable use policies for administrative, research, and accredi-
tation purposes. Various EHR data analysis tasks have potential benefits for stake-
holders including improving patient care and data integrity and reducing patient and 
institutional costs of care. All participants in a care or research environment have 
the responsibility to conform to best practices and the law. Regulations specify the 
basic ground rules and minimum required protection to ensure a legal environment 
supportive of the various healthcare tasks (Shickel et al., 2018).

As deep learning becomes more commonplace in healthcare domains, computing 
and data resources associated with EHR datasets will grow. Prospective employers 
of data scientists interested in potential EHR data analysis tasks and high-perfor-
mance computational resources must ensure that they are aware of the potential for 
legal action against any instigation of medical fraud and loss of public trust. Data 
scientists receive additional training in relevant federal regulations regarding privacy 
(Mohsen et al., 2022).

1.7.2 P atient Privacy and Data Security

DL models for EHR data must follow the relevant privacy and security guidelines 
and legislation. Some measures include de-identifying EHR data by removing or 
masking identifiers for use in research, adding noise to the records, and applying 
cryptographic methods to achieve a trade-off between privacy and utility. Other 
methods include differential privacy, secure multi-party computation, homomorphic 
encryption, and secure enclaves (Negro-Calduch et al., 2021).

Additionally, a framework that allows data security mechanisms to be defined 
and dynamically bound to an application will make it easier to execute specialty use 
cases on the data, as organizations can enforce differing security postures across 
distinct data-handling processes. These security mechanisms should include data-in-
transit encryption, data-in-use protection, access controls, and security monitoring. 
Anomaly-based intrusion detection and a machine learning-driven correlation sys-
tem can be used to help locate the source of a security violation, and a data analytics 
monitoring tool can be instituted to facilitate data quality testing, regulatory compli-
ance, and audit access. Despite EHR data containing patient-sensitive information, 
privacy and security measures should not prevent the exchange of EHR data within 
and between organizations (Alaboud et al., 2023). These sets of measures help to 
build trust in the exchange, improve its usability, limit detrimental risks, and identify 
the impact of the information exchange.

1.7.3 B ias and Fairness in EHR Data Analysis

Assessing model fairness and avoiding biases with respect to race, gender, and other 
sensitive attributes require careful data preprocessing, model training, and fairness 
evaluation. At the data preprocessing stage, one fundamental problem is missing 



Deep Learning Models for Electronic Health Record Analysis� 19

data in the records, which might result from data collection decisions. Direct dele-
tion of features related to race or gender might result in biased model evaluation and 
even discrimination of underrepresented groups. One approach to protecting patients 
and ensuring model fairness is to provide patients with opportunistic control to ano-
nymize records on their own, thus controlling the release of data to third parties 
(Chintala, 2024; Hossain et al., 2023).

Incorporating patient-generated privacy into a DL model’s architecture brings the 
technological challenge of dealing with less organized feature structures than that 
with real-world data. The DL model should be informed and designed to predict well, 
even with patient-manipulated features. Specifically, a fairness-aware model might 
require additional input, such as demographic-independent sub-feature spaces, to 
ensure that patient demographic features are neither learned nor used by the model 
(Goldstein et al., 2024).

1.8 � FUTURE DIRECTIONS AND EMERGING 
TRENDS IN DL FOR EHRS

Over the years, the use of technology in healthcare has been rapidly evolving. With 
the increasing reliance of healthcare providers on technology, the global AI-driven 
health market is experiencing significant growth. DL technologies are being tire-
lessly explored for applications in EHRs to optimally manage patient care. When 
used with predictive analytics, DL opens doors to personalized medicine. With 
reduced treatment time, medication-related costs, deaths, and comorbidities, patient 
quality of life will greatly improve. In terms of data utilization, continuous learning 
models can provide real-time utilization of EHR data.

1.8.1  DL in Complex Medical Data

Despite the concerns, healthcare system stakeholders are eyeing DL’s potential 
applications with EHRs. Every domain has its challenges. At present, there are no 
transparent algorithms capable of explaining DL predictions from complex medical 
data. Partnerships between healthcare systems and technology companies are being 
formed to develop DL models that can use EHR data to predict and improve patient 
outcomes (Negro-Calduch et al., 2021).

Although DL applications are addressing various clinical challenges today, 
researchers are exploring a variety of other emergent areas. For instance, wearable 
technology has been used in emergency departments to assess opioid use disorder 
and for novel forecasting models of ramp time in the intensive care unit, in part, due 
to the phenomenal growth in EHR data utilization for research and patient care prac-
tice. Another pertinent use of DL models is for analyzing the dynamics of clinical 
trial patient selection for stroke research (Alaboud et al., 2023).

1.8.2 F ederated Learning in Healthcare

Lately, a new privacy-enhanced machine learning paradigm, federated learning, 
has emerged that enables training machine learning models on decentralized data 



20� Handbook of Deep Learning Models for Healthcare Data Processing

sources. Each institution trains the model with its local data, and then the models are 
aggregated to obtain the global model, which is shared with each of the participants. 
Federated learning allows for improving the privacy of models with EHRs while still 
retaining the ability to research patient data, as each data source retains control over 
its own data and the data is never centrally pooled. This allows for training machine 
learning models externally without sharing sensitive health information across dif-
ferent entities (Negro-Calduch et al., 2021).

There is increasing interest in using federated learning in EHR data analysis, in 
broad applications such as analyzing healthcare workers’ immunization rates, DL 
medical images to gauge the severity of traumatic brain injury among hematoma 
patients, and predictive patterns for potential ED patients and identifying the under-
lying clinical and molecular pathways of early-stage Alzheimer’s disease. In this 
model, individual data stays behind user privacy walls and are not sent to a central-
ized server. Instead, an algorithm makes individual predictions based on data from 
each user. Then, those predictions are aggregated, or combined, into a global pre-
diction which can then improve the model for everyone (Goldstein et al., 2024; Guo 
et al., 2021). In this manner, a user’s individual information never leaves their device. 
In the case of hospital predictive medicine, the user becomes the hospital, and data 
on individual patients becomes private user data.

Real applications include TensorFlow, a tool that can be used in pregnancy-
related research that permits training models between Spanish and Italian centers 
without exchanging patient data. The major outcome was that federated learning 
enabled large-scale model training on projects that could not be trained elsewhere 
(Chintala, 2024). Federated learning reduces the need for expert-to-expert contact to 
have joint projects in risk analysis and project feasibility studies. It allows for the col-
laboration of world experts to find the best solutions to difficult questions using data 
from different hospitals; this approach also supports the direct translation of mod-
els for clinical use in different regions. Initially training the model on international 
cohort countries leverages diverse experiences before adapting to local needs, such 
as those in the UK, without needing to address ethics concerns about international 
patient data. Related to the technical issues, researchers identified potential benefits 
of machine learning in healthcare as well as an ethical and regulatory framework for 
implementing federated learning in the health sector (Si et al., 2021).

Federated learning in the health sector ensures that data remains local and con-
sent is maintained while leveraging the aggregated knowledge of a global model. 
This approach supports developing systems that treat chronic or rare diseases, 
upholding ethical and compliance principles from model design to clinical trials 
or interventions. There has been progress with a federated learning framework in 
a clinical neurology and rheumatology application in France aimed at diagnosing 
patients based on a large volume of EHRs, but it has not moved from the technical 
feasibility stage to operational deployment.

The increasing interest in federated learning within AI research communities and 
the broader public highlight its relevance to real-world concerns. Although it is a 
relatively new approach in applied AI, the FL is straightforward: to unlock shared 
knowledge across different data sources by training machine learning models exter-
nally. Each institution can collaboratively train multiple models across its data while 
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staying within the relevant approved data use policies and only then sharing mod-
els from which shared model knowledge can be inferred without sharing where the 
data points lie. Thus, closely aligned to ethical data sharing and deployed within the 
human rights agendas, FL offers great promise as an emerging technology enhanc-
ing the value proposition of federations and large data sources.

1.9  CONCLUSION

Over the last decade, despite the substantial progress in deep learning, the healthcare 
field has posed particular challenges regarding model reliability and adaptability. 
These challenges mainly stem from the need for interpretable model decisions in 
clinical settings. Practitioners are often under regulatory or institutional pressure 
to ensure that every decision made by a model is clinically significant and justified. 
Moreover, the adoption of predictive methods in healthcare depends on how eas-
ily nonexperts can understand, validate, and provide feedback on model predictions 
(Guo et al., 2021).

Deep learning is leading so far in accuracy in a variety of clinical prediction 
problems, including image analysis, time-series forecasting, and patient outcome 
prediction. However, its lack of interpretability during detection is a fundamental 
issue in healthcare. Patient stratification and predicted outcomes based on thou-
sands of features make it difficult to understand the relationships between these out-
comes and what patients can manage. The model’s behavior is non-transparent, and 
because EHR data involves multiple tasks, it can be challenging or even impossible 
to develop rules about how a model shifts between tasks (Afshar et al., 2023). Due 
to the generalization and domain transfer limitations, it is hard to know how well a 
vision-dominant model will perform on these unique aspects of patient outcomes 
without the ability to monitor the behavior of predictions in rare but critical patient 
subpopulations.
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2.1 INTRODUCTION

The amount of data in all industries is growing exponentially in today’s connected 
world. Consequently, new technologies are emerging that interact with data to 
extract meaning; one such technology is machine learning. Machine learning (ML) 
is a quickly evolving domain of technology that crosses the frontiers of computer 
science, statistics, data science, and artificial intelligence (AI) [1]. It addresses the 
problem of building computers that may unconsciously progress themselves through 
experience [2]. The ML model learns from historical data, creates predictive sys-
tems, and predicts outcomes as soon as it receives fresh data.

ML is commonly classified into four categories: supervised, unsupervised, semi-
supervised, and reinforcement [3]. Many industries are currently using machine 
learning extensively, particularly healthcare [4]: Every second, a massive quantity of 
healthcare data is generated and examined to extract meaningful insights; the health-
care industry accounts for 30% of all data volume worldwide. Figure 2.1 shows a 
predicted 36% annualized compound growth rate in medical records by 2025, 10% 
more than in the financial sector, 11% more than for media and entertainment, and 
6% more than in industry [5]. This availability and growing volume of statistics 
might be very beneficial for the healthcare industry.

The need for study in this area is driven by the significance of data in the health-
care industry and the power of ML to uncover hidden patterns in data. The avail-
ability of electronic health record (EHR) data has increased, making it easier to 
apply and investigate more robust and sophisticated computational methodologies 
like ML in the field of disease prediction. ML techniques are scalable and adaptive 
to composite patterns of voluminous data and will therefore be best suited for solving 
healthcare problems. The importance of ML in the medical field lies in its capacity 
to process large datasets that humans cannot manually handle. It can then trans-
form the analysis of that data into medical insights, helping healthcare professionals 
understand and provide necessary care. This ultimately leads to better outcomes, 
lower treatment costs, and more satisfied patients.

One of the primary applications of ML in healthcare is identifying disorders that 
are challenging to diagnose. However, ML is also widely used in processes such as 
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the timely discovery of new drugs, the analysis of medical images, the creation of 
unique medications, the use of smart health records, scientific testing, crowd-sourced 
data collection, and the forecasting of outbursts. ML can both save healthcare costs 
and strengthen the relationship between patients and physicians; it has significant 
implications for advancing the healthcare sector, which will be advantageous to 
both patients and experts. Meanwhile, medical diseases are generally categorized as 
acute versus chronic; most acute illnesses last only a few days or weeks and develop 
suddenly, while chronic conditions take longer to manifest and might worsen over 
months or even years [6]. ML is extensively used in the prediction of both chronic 
and acute diseases, and we also examine this in detail in this chapter.

2.1.1 M otivation

Medical diagnosis is a complex and important practice that must be accurate. 
Generally, diseases are diagnosed by medical professionals based on their knowl-
edge and skills, but this has at times resulted in erroneous diagnoses and high patient 

FIGURE 2.1  Compound annual growth rates: 2018–2025.
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expenditures. Early-stage diagnosis lowers the death rate and enhances the likeli-
hood of treating the condition. For that reason, ML-based computing systems are 
needed that can generate intelligence for answering unclear questions. Voluminous 
datasets and intellectual algorithms are important for applying ML in healthcare.

Chronic diseases have caused extensive effects on individual lifespans and 
quality of life as well as on governments and nations across the globe. Globally, 
approximately 17.9 million people died from cardiovascular disorders in 2019. Lung 
cancer accounted for 1.8 million deaths in 2020, the most cancer deaths that year. 
Furthermore, it is estimated that 700 million people worldwide will have diabetes 
by 2045 [7]. Even though there is no cure for chronic diseases, early detection and 
diagnosis can significantly improve outcomes. Therefore, healthcare organizations 
require new and potent technology like machine learning to deliver high-quality, 
cost-effective, timely service to patients. Toward this end, we conducted the study for 
this chapter guided by the following research questions (RQs) aimed at identifying 
the latest trends in ML disease prediction:

RQ1: What ML methods are most often utilized for disease prediction?
RQ2: Which software do researchers frequently employ to put their prediction 

models into practice?
RQ3: What metrics do the researchers employ to measure the performance of 

their models?
RQ4: What research gaps are there in the analyzed literature and what future 

work might be possible?

This chapter is organized into sections. In Section 2, we describe how we selected 
the research articles for answering the RQs. Section 3 contains a detailed and sys-
tematic review of the literature we studied. Section 4 contains the major findings 
from the literature review. Section 5 contains answers to the RQs and discussion. 
Section 6 concludes the study.

2.2  METHODS

2.2.1 S earch Methodology

We used a thorough and systematic search methodology to identify all relevant 
papers in Google Scholar, IEEE Explorer, Scopus, Science Direct, Research Gate, 
etc. using the search terms “ML in healthcare”, “chronic disease prediction”, “ML 
predictive models”, and “ML in disease prediction”. We searched for articles pub-
lished between 2018 and 2023 that covered both chronic and acute diseases like thy-
roid disease, cardiovascular disease, chronic kidney disease (CKD), breast cancer, 
alopecia areata, brain tumors, diabetes hepatitis, dengue, and COVID-19. We break 
down our article selection process in Figure 2.2 including the number of articles 
considered for each disease.

2.2.1.1  Criteria for Selection
As we described, we followed the process described in the previous section to identify 
article titles and abstracts, selected ones we deemed suitable, and removed duplicate 
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articles; we also accepted or excluded articles based on language, methodological 
merit, and publication date; specifically, we excluded articles published before 2018, 
and we required that articles for the chapter study be free, full-text articles in English 
that were legitimately published. We screened the remaining publications to ensure 
their appropriateness for answering the research questions.

2.3  RELATED WORK

Researchers have applied different ML algorithms and methodologies for building 
predictive models to predict various acute and chronic illnesses. Both are covered ats 
great length in this section.

2.3.1 ML  Predictive Models for Chronic Disease Identification

Wroge et al. tested different ML models for categorizing Parkinson’s disease utiliz-
ing the mPower Voice dataset. The smartphone’s voice activity was used to record 

FIGURE 2.2  Article selection for this chapter’s study.
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each participant’s phoneme /aa/ for 10 seconds. Then, the authors used Scikit-Learn, 
Keras, and TensorFlow libraries to analyze the data to develop decision tree (DT) 
and support vector machine (SVM) classifiers. They used grid search with 10-fold 
cross-validation to enhance each model. The results showed that the ML models sur-
passed the average accuracy of both non-experts’ medical analysis and consultants’ 
movement disorder diagnosis accuracy [8].

Thirunavukkarasu et al. used SVM, logistic regression (LR), and k-nearest neigh-
bor (KNN) to predict liver problems. They tested the model’s efficacy using an accu-
racy and confusion matrix, and LR produced higher sensitivity, although similar 
accuracy to that of KNN. LR best predicted liver disease in this study [9]. Kapoor 
and Mishra measured the accuracy of neural networks in identifying human alo-
pecia areata using a system based on using feed-forward ANN (advanced neural 
network) and backpropagation. The 91% accuracy that they obtained was sufficient 
for healthcare specialists to make high-quality judgments [10]. Mir and Dhage com-
bined SVM, random forest (RF), naïve Bayes (NB), and classification and regression 
trees (CART) with the Waikato Environment for Knowledge Analysis (WEKA) pre-
diction tool in a classifier system and compared test length, accuracy, and training 
time among the classifiers. The authors found that SVN was the best classifier for 
predicting diabetes [11].

Kohli and Arora demonstrated many classification techniques utilizing data from 
University of California, Irvine (UCI) machine learning databases for disease predic-
tion for three diseases: diabetes, breast cancer, and heart disease. They used backward 
modeling to choose the datasets based on p values, and the SVM algorithm scored 
85.71% accuracy in predicting diabetes; AdaBoost scored 98.5% accuracy in predict-
ing breast cancer, and LR scored 87.1% accuracy in predicting heart disease [12].

In [13], Sarwar et  al. demonstrated an AI-based ensemble tool for diagnosing 
diabetes type-II after comparing its effectiveness with that of different ML meth-
ods: ensemble, NB, SVM, KNN, and ANN; to conduct the study, the authors used 
MATLAB 2013a and WEKA 3.6.13. They collected data from 400 persons from 
across society and tested the system’s effectiveness using 10-fold cross-validation. 
They calculated the results as the percentages of cases that were correctly and erro-
neously categorized. Sarwar et al. found that the ensemble technique performed best 
overall, with accuracy of 98.60%.

In [14], Nilashi et al. created a hepatitis illness diagnosis framework using effec-
tive ensemble learning. They reduced the data dimensionality using nonlinear 
iterative partial least squares and grouped using self-organizing maps. They used 
neurofuzzy inference ensembles for the prediction and used DT to gather the experi-
mental data’s most important properties. They tested the system using real-world 
data and compared older and more recent research results. The system Nilashi et al. 
created outperformed SVM, ANFIS (adaptive network-based fuzzy inference sys-
tem), and KNN.

In [15], Dahiwade et al. provided a generic illness prediction framework based 
on the patient’s symptoms. They compared CNN (convolutional neural network) 
and KNN algorithms and found that CNN gave the disease prediction models the 
higher accuracy of 84.50%. KNN also had higher space and time complexity. In 
[16], Çınarer and Emiroğlu tested the effectiveness of multiple tumor classification 



Disease Prediction Models Using Machine Learning� 29

methodologies for categorizing brain imaging into multifocal, n/a, multicentric, or 
gliomatosis. The authors categorized images by examining their mathematical char-
acteristics and used KNN, linear discriminant analysis (LDA), SVM, and RF to test 
and to divide the data into categories. SVM performed better than the other classi-
fiers and achieved 90% accuracy.

In [17], Atallah and Al-Mousa developed an ensemble-based ML methodology 
that combined RF, LR, KNN, and hard voting classifiers with other ML methods. 
They used this approach to predict the likelihood of heart disease, improving the 
model’s correctness and robustness. The ensemble model achieved 90% accuracy, 
higher than that for any individual classifier. In [18], Ali et al. built a hybrid intellec-
tual model to detect heart failure using LDA and SVM. They used SVM to select the 
features, and it removed all the unrelated characteristics in the data; they used LDA 
to classify the input vector as either infected or healthy. The hybrid model showed 
higher accuracy than either of the individual models, which showed accuracy rang-
ing from 57.8% to 89.01%.

In [19], Mohan et al. proposed a new technique for identifying important character-
istics using ML algorithms to enhance the accuracy of heart disease predictions. They 
used a dataset from the UCI Cleveland repository and conducted their analysis using 
the R studio rattle package. Their novel method, which combined a hybrid RF/linear 
model (HRFLM), demonstrated improved performance with accuracy of 88.7%.

In [20], Yadav and Pal presented several classification techniques using the thy-
roid disease dataset and measured their accuracy using different seed and num-fold 
values. Accuracies were 98% for DT, 99% for RF, and 93% for the extra tree. The 
authors enhanced the system using an ensemble technique called bagging that inte-
grated DT, RF, and the extra tree classifiers and applied that to a similar set of data. 
The ensemble system achieved 100% accuracy with a seed value of 35 and num-
fold to be 10. The study concluded that the ensemble approach could be utilized for 
improved thyroid identification.

Karen et al. integrated chi squared (χ2) with PCA to enhance ML methods for 
predicting heart disease in patients. To improve the raw data outcomes, they applied 
dimensionality reduction and found that PCA and χ2 produced the best results for 
the most classifiers. In addition, combining χ2 and PCA with RF gave the highest 
prediction accuracy: 98.7% in the Cleveland dataset, 99.4% for χ2, and 99.0% for the 
Hungarian dataset. Simply applying PCA to raw data showed lower performance, 
highlighting the importance of dimensionality reduction for better results [21].

Jongbo et al. investigated bagging and random subspace strategies of ensemble 
learning. The base classifiers used were KNN, NB, and DT. The efficacy of the 
model was determined using the receiver operating curve (ROC), accuracy, kappa, 
specificity, and sensitivity criteria. The results attained from the data collected from 
the UCI repository on CKD revealed that the ensemble technique outperformed 
individual base classifiers. It was found that in most of the cases, random subspace 
performed best in comparison to the bagging ensemble technique. Finally, the study 
concluded that the random subspace technique applied to KNN has given a maxi-
mum prediction precision of 100% [22].

In [23], Kumar et al. used DT, KNN, RF, LR, and SVM to identify cardiovascu-
lar disease (CVD); ROC-AUC for the RF classifier was 0.8675, and accuracy was 
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85.71%. The RF classifier outperformed all other classifiers at identifying patients 
with CVD. In [24], Hamdaou et al. developed a method for monitoring heart prob-
lems using DT, KNN, SVM, RF, and NB algorithms with data from the UCI reposi-
tory. The train test split as well as cross-validation experiment findings showed that 
NB performed better, with accuracy ratings of 82.17% and 84.28%, respectively. 
Additionally, using cross-validation reduced the accuracy of each classifier.

In [25], Terrada et  al. formulated a medical diagnosis support system for the 
identification of atherosclerosis that used ANN and adaptive boosting and learned 
involuntarily from patients’ medical data. The authors used the Cleveland and 
Hungarian datasets from the UCI repository and the Sani Z-Alizadeh dataset and 
assessed performance using ROC. ANN’s performance was superior to that of 
AdaBoost with the Cleveland dataset, and ANN had the highest prediction and 
classification accuracy at 94%.

In [26], Islam et al. compared SVM, RF, KNN, LR, and ANN on a Wisconsin 
breast cancer dataset obtained from the UCI library. They validated each system 
based on accuracy, sensitivity, specificity, and precision, as well as Matthews corre-
lation coefficient (MCC), F1, negative predictive value, false negative and false posi-
tive rates, ROC, and precision recall area under the curve (PR-AUC). The authors 
found that ANN gave the best results, with accuracy, F1, and precision of 98.57%, 
0.9890, and 97.82%, respectively.

In [27], Harimoorthy and Thangavelu developed a model to predict CKD, diabe-
tes, and heart disease using data from the UCI library and χ2 to identify the key char-
acteristics. The authors used SVM linear, SVM polynomial, improved SVM–radial 
bias kernel, RF, and DT, and improved SVM–radial bias kernel outperformed the 
other methods, achieving 98.3% accuracy for diabetes, 89.9% for heart disease, and 
98.7% for chronic renal disease.

In [28], Ripan et al. studied identifying abnormalities to effectively predict heart 
diseases utilizing k-means clustering. To find the abnormalities, the system they 
designed first determined the most advantageous k by grouping data using the sil-
houette approach. The authors then used the five most prevalent ML classification 
approaches, KNN, SVM, RF, NB, and LR, to create the resulting prediction model 
after removing the observed irregularities from the data. The results showed that 
when abnormalities were included, LR, RF, and SVM used solely for abnormalities 
had good accuracy.

In [29], Chaubey et  al. evaluated the accuracy of the three most popular ML 
approaches, KNN, DT, and LR, using the UC Irvine dataset for predicting thyroid 
illness and determined that KNN better predicted thyroid illness than the other clas-
sifiers. In [30], Rohini and Surendran hypothesized that input features can predict 
AD pathology or cognitive impairment owing to aging using LR, MLR, and SVM 
and first normalizing and scaling features for the analysis. Analyzing the results 
using multiple different metrics demonstrated that the model was highly effective in 
distinguishing AD pathology from age-related cognitive harm.

In [31], Chittora et al. objected to identifying chronic kidney disease based on 
vital and full features from the CKD dataset. They used correlation-based, LASSO 
regression, and wrapper method to select the features and used seven ML classi-
fiers: ANN, C5.0, LR, CHAID (χ2 automatic interaction detection), LSVM (least 
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squares support vector machine), KNN, and random tree. Each classifier’s results 
were based on both full and selected features utilizing correlation-based LASSO, 
wrapper, SMOTE (synthetic minority over-sampling technique) with selected fea-
tures via LASSO, and SMOTE with complete features. The authors discovered 
that when SMOTE had all of its characteristics, LSVM had the highest accuracy 
at 98.86%.

In [32], Ahmed et al. designed a diabetes prediction framework using fused ML, 
specifically ANN and SVM models. They used the models to analyze the dataset to 
measure the models’ accuracy at diabetes diagnosis. Finally, fuzzy logic determined 
a positive diabetes diagnosis by using the model outputs as inputs to the member-
ship function. The suggested fused ML framework achieved prediction precision of 
94.87, greater than that for the other techniques.

In [33], Ahmad et al. used extreme gradient boosting (XGB), KNN, SVM, and 
LR to predict heart illness, specifically to tune, teach, and evaluate these models 
with and without tuning hyperparameters against existing approaches. Modifying 
the XGB’s Grid Search parameters for testing resulted in 99.03% accuracy. In short, 
XGB with GridSearchCV was the optimal hyperparameter to evaluate accuracy.

In [34], Saboor et al. deployed nine ML methods (AB, LR, ET, MNB, CART, 
SVM, LDA, RF, and XGB) before and following hyperparameter adjustment to pre-
dict human heart disease. They assessed each classifier’s efficacy using sensitivity, 
specificity, F1, and accuracy, and they used the well-known K-fold cross-validation 
technique to train and validate the ML algorithms. The experimental results showed 
that data standardization and ML classifier hyperparameter changes increased clas-
sifier accuracy and delivered notable outcomes.

In [35], Islam et al. used various ML techniques to diagnose CKD at an earlier 
stage. To validate the ML-based detection models, they first preprocessed the pri-
mary CKD data. Then, they used PCA to determine the most prevalent features for 
identifying CKD. They then applied the input variables to train and evaluate the 
models built with CKD patients. The authors identified that hemoglobin, albumin, 
and specific gravity had the greatest impact on identifying CKD after they filtered 
selected features from the remaining variables. Accuracy was their primary criterion 
in determining each algorithm’s overall performance.

In [36], Khan et al. made a significant explanation using ML for precise diagnosis 
and treatment selection for individuals with CVD. The authors randomly selected 
heart disease patients from the Khyber Teaching Hospital and Lady Reading Hospital 
in Pakistan and used DT, RF, LR, NB, and SVM to classify the patients and forecast 
their prognosis. With ROC curves, accuracy, and sensitivity of 85.01%, 92.11%, and 
87.73%, respectively, the RF algorithm demonstrated the greatest CVD prediction 
accuracy. Additionally, RF showed the fewest errors with 43.48% and 8.70%, respec-
tively, for classification and specificity errors. The results show that RF is the best 
algorithm for categorizing and forecasting CVD.

2.3.1.1  ML Predictive Models for Acute Disease Identification
Davi et al. developed an ML approach to project the severity of dengue. The infor-
mation in the human genome served as the technique’s foundation. The model used 
SVM to determine the optimal categorization for the loci; the authors then used 



32� Handbook of Deep Learning Models for Healthcare Data Processing

ANN to classify patients with severe dengue fever, and the ANN model showed 
accuracy of more than 86%, sensitivity over 98%, and specificity over 51% [37].

Islam et al. utilized X-ray images to propose an automatic technique for diagnos-
ing COVID-19 that entailed aggregating a CNN with LSTM. They used LSTM to 
diagnose disease using the retrieved features and used CNN to extract features, and 
their combination model achieved 99.4% accuracy. F1, AUC, specificity, and sensi-
tivity were, respectively, 98.9%, 99.9%, 99.2%, and 99.3%. This model could assist 
medical professionals in identifying COVID-19 patients effectively [38].

Rasheed et al. assessed the effectiveness of machine learning algorithms in auto-
matically identifying COVID-19 patients from their X-ray pictures. They used a con-
ventional ML algorithm, LR, and a DL technique, deep CNN, to build the model, 
and they used PCA as a feature extractor; using feature selection reduced computa-
tion time and improved the model’s overall precision. LR and CNN both showed 
positive results for diagnosing COVID-19-positive patients, with respective accura-
cies of 95.2% and 97.6%; with PCA, accuracy was 100% [39].

Khanday et al. utilized conventional and ensemble ML techniques to categorize 
the medical records of 212 patients with four different diseases: COVID-19, ARDS, 
SARS, or COVID-19 + ARDS. Several characteristics were extracted from these 
medical records present in textual format. Upon implementing the classification pro-
cedure, the study demonstrated that the LR and NB approaches yielded the best 
results, with 96% recall, 94% precision, 95% F1, and 96.2% accuracy. Several other 
ML methods that showcased good results were RF, DT, boosting, and stochastic 
gradient boosting [40].

Brunese et al. used KNN to create a model to identify COVID-19 from medical 
images obtained from the GitHub repository. The model successfully distinguished 
COVID-19 from other lung diseases with similar symptoms, with average precision 
of 0.965. The results of the trial showed the effectiveness of the suggested model [41].

Brinati et al. verified the medical reliability of using blood tests and ML as an 
alternative to rRT-PCR for identifying patients with COVID-19. The ML classifiers 
utilized hematochemical scores observed from blood testing, and the models were 
correct between 82% and 86% of the time; sensitivity ranged from 92% to 95%. The 
models performed noticeably better than the gold standard. Additionally, they built 
an interpretable DT system to decision making in understanding blood test results, 
and that model performed noticeably better than the gold standard [42].

Kang et al. constructed a model from patients’ medical data to detect COVID-19 
infection in data from the Tumor Centre of Union Hospital in China. TensorFlow 
was consequently used to build the system using NN. The model performed well in 
terms of prediction with an AUC of 0.953. The model effectively described prompt 
medical participation and improved recovery rates [43].

Ohata et al. developed a method for utilizing chest X-rays to identify COVID-
19 infection; they used transfer learning because there were only a few available 
images of COVID-19 infection. The authors used multiple CNN architectures with 
the ML methods NB, KNN, RF, MLP, and SVM. MobileNet with SVM (extrac-
tor and classifier) showed excellent performance with accuracy of 98.5%, and 
DenseNet201 + MLP showed excellent performance for another dataset with accu-
racy of 95.6% [44].
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Arpaci et al. utilized six ML classifiers to build six separate systems for iden-
tifying COVID-19: LR, CR, BayesNet, IBk, J48, and PART; these classifiers were 
dependent upon 14 medical features. The authors investigated 114 incidents that hap-
pened at the Taizhou Hospital in Zhejiang, China. The outcomes demonstrated that 
CR was a very accurate classifier for identifying COVID-19, with an accuracy of 
84.21%. These results aided in the quick identification of COVID-19 when RT-PCR 
kits were not sufficient for testing [45].

Singh et al. set out to create and implement a novel ensemble technique to identify 
COVID-19 early and take the appropriate precautions using a COVID-19 dataset that 
they synthesized in Python. The ML classifiers they used were DT, ID3, and SVM, 
and they found that their innovation technique showed superior precision, kappa, 
root mean square error, recall, F-measure, and accuracy [46].

Meraihi et al. compiled over 160 ML algorithms developed to combat COVID-
19 and separated them into deep or supervised learning. Then, they explained 
each category’s ML algorithm and number of parameters, which included the 
nature of the analyzed data, the problem being addressed, and the metrics being 
assessed. Based on the findings, 79% of cases used deep learning, 65% used CNN, 
and 17% used specialized CNN. Only 16% of the approaches under investigation 
utilized supervised learning, and the least-used techniques were RF, SVM, and 
regression [47].

Kwekha-Rashid et al. reviewed articles that involved applying ML to COVID-19 
research, and of the 16 studies, 14 used supervised learning and one used combined 
supervised and unsupervised learning [48]. Results demonstrated that supervised 
learning performed better than alternative unsupervised learning, with 92.9% test-
ing accuracy. Similarly, literature [49–61] reveals that machine learning and artifi-
cial intelligence are viable approaches in medical and biomedical sectors.

2.4  SIGNIFICANT FINDINGS

Here, we address our efforts to answer the chapter study RQs. After carrying out an 
extensive study of the literature for different disease prediction models, the impor-
tant findings are summarized in Table 2.1. These findings will aid researchers in 
choosing the appropriate algorithm, software, and performance metrics for carrying 
out their work and help researchers and healthcare professionals widen their knowl-
edge base.

2.5  RESULTS AND DISCUSSION

In this section, we answer the RQs based on the findings from the reviewed literature.

2.5.1 R Q1: Popular ML Algorithms for Disease Prediction

Table 2.1 presented the most widely and frequently used ML algorithms that claim 
to provide superior diagnostics in healthcare are mentioned in along with the disease 
predicted, and Figure 2.3 presents the numbers of articles for which authors used 
each algorithm.



TABLE 2.1
Research Findings on Different Disease Prediction Models

Authors [Ref.] Disease Techniques Tools Datasets Performance 
Evaluation 

Metrics

Results Research Gaps Future Scope

Wroge et al. [8] Parkinson’s •	 DT
•	 SVM

Python mPower voice 
dataset

Accuracy, F1, 
precision, recall

For AVEC data: 83%
For GeMaps data: 
81%

Authors did not 
validate DaT 
scans and 
UPDRS.

They used very 
small auditory 
samples.

Different modalities 
like brain scans, 
speech, or 
accelerometers can 
be included.

Denser attribute sets 
can be utilized with 
spoken word or 
video.

Thirunavu 
kkarasu 
et al. [9]

Liver •	 LR
•	 KN
•	 SVM

Python Indian Liver 
Patient 
Datasetfrom 
UCI

Confusion matrix, 
accuracy

LR showed the best 
prediction accuracy 
of 73.97%.

Authors did not 
validate with the 
ROC curve.

They used few 
performance 
metrics for 
comparison.

Can be validated 
with other datasets.

Mir and 
Dhage [11]

Diabetes •	 NB
•	 SVM
•	 RF
•	 Simple CART

WEKA 
Version 
3.82

PIMA
Indians Diabetes 
Database 2015

Confusion matrix, 
accuracy, 
precision, F1, 
recall

SVM achieved the 
highest accuracy of 
79.13%.

F for simple CART 
was very low, and 
training time was 
high.

Ensemble learning 
improves the 
performance of the 
system.

(Continued )



TABLE 2.1 (Continued)
Research Findings on Different Disease Prediction Models

Authors [Ref.] Disease Techniques Tools Datasets Performance 
Evaluation 

Metrics

Results Research Gaps Future Scope

Kohli and
Arora [12]

Diabetes, breast 
and heart cancer

•	 LR
•	 DT
•	 RF
•	 SVM
•	 Adaptive 

boosting

Python Wisconsin, Pima, 
and UCI, 
respectively

Accuracy Heart disease: LR 
showed highest 
accuracy at−87.1%.

For diabetes, SVM 
was highest with 
accuracy = 85.71%. 
For breast cancer, 
AdaBoost’s 
accuracy was 
highest at 98.57%.

Authors did not 
validate using the 
ROC curve.

They used very few 
performance 
metrics.

Data munging, 
feature selection, 
and model fitting 
can be automated.

Pipeline structure 
can be used for 
data preprocessing.

Sarwar et al. 
[13]

Diabetes •	 ANN
•	 SVM
•	 KNN
•	 NB
•	 Ensemble

MATLAB 
2013a

WEKA 
3.6.13

Database of 400 
persons from 
diverse sectors 
of society

Accuracy The ensemble method 
achieved the highest 
accuracy of 98.60%.

Authors did not 
validate using the 
ROC curve.

They used very few 
performance 
metrics.

Increasing the figure 
of instances in the 
dataset improves 
effectiveness.

Nilashi et al. 
[14]

Hepatitis •	 CART
•	 NIPALS
•	 SOM
•	 ANFIS

N/A Real-world data 
from UCI

Accuracy, ROC 
curve

The proposed method 
achieved accuracy 
of 93.06%.

There was no 
paradigm for 
supporting 
incremental 
learning.

Incremental ANFIS 
can be 
implemented.

Model can be 
trained to update 
incrementally with 
new information.

(Continued )
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Dahiwade et al. 
[15]

Generic disease •	 KNN
•	 CNN

JAVA UCI repository Accuracy, time CNN achieved higher 
accuracy of 84.5%, 
and KNN showed 
shorter classification 
time.

A comparison of 
only 2 algorithms 
is not sufficient to 
build the best 
diagnosis model.

The performance 
can be evaluated 
using precision, F 
score, and recall.

Çınarer and 
Emiroğlu [16]

Brain tumor •	 KNN
•	 RF
•	 SVM
•	 LDA

N/A Rembrandt TCIA 
Database

Accuracy, 
precision, 
sensitivity, F1

SVM showed the 
highest accuracy 
and specificity and 
was more effective 
than the other 
classifiers.

Overfitting is a 
problem in LDA 
classification.

To increase 
accuracy, features 
can be selected 
based on density or 
on textures.

Atallah and 
Al- Mousa 
[17]

Heart •	 SGD
•	 KNN
•	 RF
•	 LR
•	 ensemble

N/A UCI repository ROC, accuracy, 
confusion 
matrix

The ensemble model 
achieved the highest 
accuracy of 90%.

The accuracy 
remained the same 
even after 
Gridsearh CV 
for LR.

The model can be 
tested using other 
medical datasets.

Ali et al. [18] Heart •	 SVM
•	 LDA

Python Cleveland heart 
disease dataset 
from UCI

MCC, accuracy, 
sensitivity, 
specificity, ROC

The hybrid model 
showed the best 
performance with 
sensitivity of 
85.36%, accuracy of 
90%, specificity of 
93.87%, and MCC 
of 0.799.

Accuracy is the 
same with 
traditional LDA 
and the hybrid 
model.

A hybrid predictive 
model can increase 
accuracy while 
minimizing the 
time complexity.

TABLE 2.1 (Continued)
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Mohan et al. 
[19]

Heart •	 ANN
•	 DT
•	 RF
•	 LM

R Studio 
rattle

UCI Cleveland 
dataset

Accuracy, 
sensitivity, 
specificity, 
precision, F

HRFLM gave the 
best performance 
with accuracy of 
88.7%.

Authors did not 
validate the 
method using the 
ROC curve.

Novel feature 
selection gives 
wider insights into 
which features are 
important.

Yadav and Pal 
[20]

Thyroid •	 DT
•	 RF
•	 CART
•	 Bagging 

ensemble

N/A Thyroid disease 
dataset from 
UCI repository

Seed and 
num-fold values, 
confusion 
matrix, accuracy

Ensemble bagging 
gave the highest 
accuracy and 
num-fold and seed 
values of 10 and 35, 
respectively.

Authors did not 
validate the model 
using the ROC 
curve or other 
medical datasets.

Other factors 
affecting thyroid 
disease dataset will 
be recognized and 
testing will be 
carried out 
utilizing different 
and bigger 
datasets.

Anna Karen 
et al. [21]

Heart •	 LOG
•	 NB
•	 MPC
•	 DT
•	 RF
•	 GBT
•	 PCA
•	 CHI

JAVA Cleveland 
Hungarian and 
CH (Cleveland–
Hungarian) 
from UCI

Confusion matrix, 
accuracy, recall, 
precision, F1, 
kappa, MCC

Χ2-PCA along with 
RF gave the best 
accuracy: 98.7% for 
Cleveland, 99.0% 
for Hungarian, and 
99.4% for CH.

Kappa and MCC 
confirm the 
vulnerability of 
imbalanced data.

Applying reduction 
on unprocessed 
data after PCA 
resulted in poor 
performance.

Can be utilized in 
real-world 
applications or 
different clinical 
identification.

TABLE 2.1 (Continued)
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Jongbo et al. 
[22]

Kidney •	 KNN
•	 NB
•	 DT
•	 Random 

subspace
•	 Bagging 

ensemble

Python UCI chronic 
kidney disease 
dataset

Confusion matrix, 
accuracy, 
specificity, 
sensitivity, 
kappa, ROC

The model showed 
superior 
performance, with 
all metrics reaching 
1.00 using KNN 
with random 
subspace.

Authors did not 
validate the results 
with another 
medical dataset.

System performance 
can be evaluated 
with different 
classifiers and 
ensemble 
approaches.

Kumar et al. 
[23]

Heart •	 RF
•	 DT
•	 LR
•	 SVM
•	 KNN

Python UCI heart 
disease dataset

ROC, accuracy, 
confusion 
matrix

RF showed the best 
results with 
accuracy of 85.71% 
and ROC of 0.8675.

The dataset 
consisted of only 
10 attributes.

Ensemble learning 
can be used.

Hamdaou et al. 
[24]

Heart •	 NB
•	 KNN
•	 SVM
•	 RF
•	 DT

N/A Cleveland heart 
disease dataset 
from UCI

Sensitivity, 
specificity, 
accuracy, 
precision

NB showed the best 
performance using 
both validation 
techniques, with 
accuracies of 
82.17% and 84.28%, 
respectively.

Cross-validation 
decreases the 
accuracy, and 
there is overfitting.

Other validation 
techniques can 
solve the problem 
of overfitting.

TABLE 2.1 (Continued)
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Terrada et al. 
[25]

Heart •	 ANN
•	 AdaBoost

N/A UCI Cleveland 
and Hungarian 
datasets

and
Sani Z- Alizadeh 
dataset

Recall, accuracy, 
precision, F1, 
ROC, AUC, 
confusion 
matrix

For all three datasets, 
the ROC evaluation 
of ANN models 
attained the highest 
accuracy of 94%.

The authors 
compare the 
projected model 
with a previous 
study based only 
on accuracy.

K-fold
validation
will be used.
Other ML classifiers 
will be used for 
comparison.

Islam et al. [26] Breast cancer •	 SVM
•	 RF
•	 LR
•	 KNN
•	 ANN

Python Wisconsin Breast 
Cancer dataset 
from UCI

Confusion matrix, 
accuracy, 
sensitivity, 
specificity, 
precision, ROC, 
F1, MCC

ANN showed 
excellent 
performance: 
accuracy = 98.57%, 
precision = 97.82%, 
F1 = 0.9890

Authors did not 
validate the result 
with another 
medical dataset.

Ensemble learning 
increases the 
model’s 
effectiveness.

Harimoort hy 
and Thangavel 
u [27]

Diabetes, heart 
and kidney 
disease

•	 SVM-linear
•	 SVM-
•	 Polynomial
•	 Improved 

SVM-radial bias 
kernel

•	 RF
•	 DT

R studio UCI dataset Confusion matrix, 
accuracy, 
precision, 
sensitivity, 
specificity

Enhanced SVM-
radial bias kernel 
showed accuracies 
of 98.3%, 98.7%, 
and 89.9% for 
kidney, diabetes, and 
heart disease, 
respectively.

N/A The performance of 
the technique can 
be tested with other 
datasets with more 
attributes.

TABLE 2.1 (Continued)
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Ripan et al. [28] Heart •	 K-means
•	 KNN
•	 RF
•	 SVM
•	 LR
•	 NB
•	 Silhouette

Python Heart disease 
dataset in 
Kaggle

Precision, recall, 
accuracy, ROC

RF outperforms other 
classifiers on recall, 
precision, and 
accuracy.

KNN and NB 
obtained similar 
accuracy with and 
without 
anomalies.

Further testing will 
be done by 
obtaining current 
datasets from 
medicinal centers.

Chaubey et al. 
[29]

Thyroid •	 LR
•	 DT
•	 KNN

N/A UCI databases Confusion matrix, 
accuracy

KNN best predicted 
thyroid disease in 
this dataset.

When compared 
with previous 
work, the accuracy 
of some classifiers 
was lower with 
different datasets.

Authors intend to 
assess the accuracy 
of KNN and DT 
with the medical 
data of 807 patients 
from Kashmir.

Rohini and 
Surendran[30]

Alzheimer’s 
disease

•	 Multivariate LR
•	 LR
•	 SVM

Python ADNI database 
(Alzheimer’s 
disease 
Neuroimaging 
Initiative)

Accuracy, ROC, 
AUC

The proposed system 
performs well: 
accuracy = 89%, 
AUC = 78%.

N/A LFGS, conjugate 
gradient, and 
BFGS optimization 
can be used.

The one-vs.-all 
technique can be 
incorporated for 
superior multiclass 
classification.

TABLE 2.1 (Continued)
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Chittora et al. 
[31]

Kidney •	 ANN
•	 C5.0
•	 CHAID
•	 LR
•	 LSVM
•	 KNN

N/A UCI repository Accuracy, 
precision, recall, 
F1, AUC, Gini 
coefficient

LSVM showed the 
highest accuracy at 
98.86%.

N/A More feature 
extraction 
techniques can be 
applied to validate 
the performance of 
the system.

Ahmed et al. 
[32]

Diabetes •	 ANN
•	 SVM

N/A N/A Accuracy Accuracy for the 
suggested fused ML 
model was 94.87%.

N/A N/A

Ahmad et al. 
[33]

Heart •	 LR
•	 KNN
•	 SVM
•	 GBC Grid 

SearchCV

Python Cleveland, 
Hungary, 
Switzerland, 
and Long 
Beach V and 
UCI Kaggle

Accuracy, 
precision, recall, 
F1

Extreme Gradient 
Boosting with Grid 
Search CV 
generated the 
highest accuracies 
for both datasets of 
100% and 99.03%, 
respectively.

N/A To improve the 
model’s 
performance, a 
variety of feature 
selection 
techniques can be 
applied.

Saboor et al. 
[34]

Heart •	 LR
•	 AB
•	 ET
•	 RF
•	 MNB
•	 XGB
•	 CART
•	 SVM
•	 LDA

N/A UCI
Statlog
Z-Alizadeh Sani

Accuracy, 
precision, recall, 
F1

SVM achieved the 
best accuracy during 
hyperparameter 
tuning.

N/A XGBoost can be 
employed to 
potentially increase 
the accuracy of 
forecasting 
children’s heart 
disease.

TABLE 2.1 (Continued)
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Khan et al. [36] Heart •	 DT
•	 RF
•	 LR
•	 NB
•	 SVM

N/A Lady Reading 
Hospital and 
the Khyber 
Teaching 
Hospital in 
Khyber 
Pakhtunkhwa 
Province, 
Pakistan

Accuracy, 
sensitivity, 
specificity, 
ROC, 
misclassification 
error

RF demonstrated the 
greatest sensitivity, 
ROC, and accuracy 
at 85.01%, 92.11%, 
and 87.73%, 
respectively.

N/A High-dimensional 
data enhances the 
ML model’s and 
algorithm’s 
accuracy.

Davi et al. [37] Dengue •	 SVM
•	 ANN
•	 SVM-RFE

Python Real-world data 
collected from 
3 hospitals

Accuracy, 
sensitivity, 
specificity, 
precision, F1, 
ROC, PR curve, 
confusion 
matrix

ANN produced 
median accuracy > 
86%, sensitivity > 
98%, and specificity 
> 51%.

Patients suffering 
from dengue fever 
and severe dengue 
are not distributed 
proportionally to 
distribution in the 
general populace 
in the dataset.

This can be 
extended to other 
Mendelian-based 
and genetically 
influenced 
diseases.

Islam et al. [38] COVID-19 •	 CNN
•	 LSTM
•	 Grad-CAM

Python GitHub, 
Radiopae dia, 
TCIA, SI 
RMMen deley, 
Kaggle, and 
NIH dataset

Confusion matrix, 
accuracy, 
specificity, 
sensitivity, F1, 
AUC, ROC

CNN- LSTM gave 
the highest accuracy 
of 99.9%.

Only posterior–
anterior sights of 
X-rays were 
considered.

Radiologists would 
be involved in a 
comparative 
analysis of the 
suggested system.
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Rasheed et al. 
[39]

COVID-19 •	 LR
•	 CNN
•	 PCA
•	 GAN

Python Joseph Paul
Cohen and Chest 
X-ray Images 
repository

ROC, 
computation 
time

Without PCA, LR 
and CNN gave 
accuracies of 
95.2–97.6%; with 
PCA, accuracy 
ranged from 97.6% 
to 100%.

Authors did not 
validate the 
system on a 
relatively 
substantial dataset.

The system was 
prone to 
overfitting.

CNN architecture 
will be made 
composite by 
augmenting further 
layers and using 
data apart from 
image data.

Khanday et al. 
[40]

COVID-19 •	 SVM
•	 MNB
•	 LR
•	 DT
•	 RF
•	 Ensemble

Python Open- source 
data repository 
GitHub

Accuracy, 
precision, recall, 
F1

LR and MNB gave 
accuracy of 96.2%.

A smaller number 
of COVID-19 
patients were 
tested by available 
techniques.

Recurrent NN can 
be incorporated.

The system could 
classify by gender.

Brunese et al. 
[41]

COVID-19 •	 KNN WEKA Covid Chest 
X-ray Dataset 
GitHub

Confusion matrix, 
precision, recall, 
F1, ROC

The system achieved 
an average exactness 
and recall of 0.965.

Most of the X-rays 
used were from 
men, and there 
were only 85 
images.

The model can be 
validated on a 
healthy chest X-ray 
set.

Formal verification 
techniques and 
deep learning can 
be applied.
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Brinati et al. 
[42]

COVID-19 •	 DT
•	 KNN
•	 LR
•	 NB
•	 RF
•	 TWRF
•	 SVM
•	 MICE

Python IRCCS
Ospedale San 
Raffaele

Accuracy, 
sensitivity

The accurateness lies 
between 82–86% 
which is reasonably 
good concerning the 
gold benchmark.

There were very 
few cases. The 
model consistently 
and accurately 
predicted the 
classified 
instances.

More 
hematochemical 
factors will be 
included from 
multiple centers.

Ecological 
validation will be 
undertaken. Along 
with RT-PCR, a 
chest X-ray or 
PCR-RNA swab 
test will be 
conducted.

Kang et al. [43] COVID-19 •	 ANN Python Tumor Center of 
Union Hospital, 
China

AUC, ROC The system obtained 
superior 
performance with 
AUC of 0.953.

The model was not 
validated in an 
external 
environment or 
verified utilizing 
prospective 
testing.

Authors will use a 
larger and more 
recent dataset to 
improve and 
validate the 
existing models.
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Ohata et al. [44] COVID-19 •	 NB
•	 RF
•	 KNN
•	 SVM
•	 MLP

N/A Dataset A: chest 
X-ray from 
KaggleDataset 
B: NIH chest 
X- rays from 
Kaggle

Accuracy, F1 For Dataset A: 
MobileNet + SVM 
with accuracy of 
98.62%.

For Dataset B: 
DenseNet201+ MLP 
with accuracy of 
95.641%.

Testing did not 
include X- rays 
for different lung 
diseases.

Authors will test the 
proposed method 
using an 
imbalanced dataset 
and compare it 
with models based 
on training network 
and fine-tuning 
from scrape.

Arpaci et al. 
[45]

COVID- 19 •	 LR
•	 BayesNet
•	 CR
•	 IBk
•	 J48
•	 PART

WEKA From Taizhou 
Hospital, 
Zhejiang 
Province, China

Accuracy, F, 
MCC, ROC, 
AUC

CR had the best 
performed with 
accuracy of 84.21%.

The sample size 
was relatively low

Authors will include 
COVID-19 
symptoms in 
predicting the 
infection and with 
data augmentation.

Singh et al. [46] COVID-
19

•	 DT
•	 ID3
•	 SVM

Python A synthetic 
COVID-19 
dataset

Precision, kappa, 
root mean 
square, recall, F, 
accuracy

The novel ensemble 
method produced 
higher accuracy and 
other metrics.

The validation of 
the model is not 
done with ROC 
curves and with 
another medical 
dataset.

Deep learning can 
be applied to image 
data. A more 
general ensemble 
model can be built 
to account for 
diverse diseases.

TABLE 2.1 (Continued)
Research Findings on Different Disease Prediction Models



46� Handbook of Deep Learning Models for Healthcare Data Processing

FIGURE 2.3  ML algorithms used in the literature.

Figure 2.3 shows clearly that SVM is the most used ML algorithm for disease 
prediction, used in 23 of 40 research articles. After SVM, the most used algorithms 
were DT, RF, and KNN, and the least used was simple CART.

2.5.2 R Q2: Tools for Implementing Predictive Models

Tools are a major part of ML, and the correct tool can be as significant as the great-
est algorithms; some widely used tools for disease prediction models are WEKA, 
Python, MATLAB, R Studio, and JAVA. Figure 2.4 shows the tools that were used 
along with the number of articles they were used in.

The figure shows clearly that Python was the most widely used software for 
implementing disease prediction models, followed by WEKA and MATLAB. The 
least used were R Studio and JAVA.

2.5.3 R Q3: Performance Metrics Used for Evaluation

Researchers used multiple performance metrics to evaluate their proposed models. 
Metrics are chosen based on their relevance to the problem and include confusion 
matrix, accuracy, precision, recall, sensitivity, specificity, kappa statistic, ROC curve, 
AUC, PR curve, and F1. Figure 2.5 shows the metrics the different researchers used 
in the literature we examined along with the numbers of articles they were used in.
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FIGURE 2.4  ML software used in the literature.

FIGURE 2.5  Performance metrics researchers used for evaluation.
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Figure 2.5 displays that accuracy is the most common of all the metrics: Out of 40 
articles, the authors of 36 studies used accuracy to validate their models. Accuracy 
was followed by F1, which authors of 20 articles used, and AUC, which was used by 
authors of 17 articles. MCC and kappa are the least used metrics.

2.5.4 R Q4: Limitations and Future Work

Table 2.1 includes research gaps we identified in the literature as well as possible 
scopes of future work. One of the most common research gap was that many authors 
validated their models on only one dataset. Some authors used very small samples, 
and some studied only a few performance metrics. A number of authors also did not 
validate their models using the ROC curve, and some only compared two ML classi-
fiers. Finally, a number of studies showed overfitting. Researchers did propose some 
important future enhancements, such as using different validation techniques and 
different datasets including recent data from medical centers. Researchers proposed 
ensemble learning to enhance prediction accuracy as well as selecting different 
features and incorporating dimension reduction, data augmentation, data munging, 
pipelining, and incremental learning.

2.6  CONCLUSION AND FUTURE WORK

Machine learning plays a significant role in enabling accurate disease prediction. 
In this chapter, we presented an in-depth study of different ML techniques used in 
predicting both chronic and acute diseases, addressing our research questions in 
the process. A number of important conclusions can be drawn from our work. First, 
the identified research gaps and potential future work offer directions pursuing and 
producing improved models. Second, we identified that the most widely used ML 
algorithm for disease prediction, software for implementing the model, and evalua-
tion metric are SVM, Python, and accuracy, respectively.

We also established that the accuracy of the model depends on the dataset, the 
chosen features, and the dimension reduction and data augmentation techniques; 
algorithm accuracy can also depend on the dataset. Combining different ML tech-
niques into ensemble models also produces improved performance and accuracy. 
Prediction models should be verified against various medical datasets using various 
criteria, and data should not be prone to overfitting. To find the best prediction clas-
sifier for a particular disease, multiple classifiers should be compared, and research-
ers should use large sample sizes to ensure accurate results. Our findings here will 
assist practitioners in selecting effective diagnostic tools that can aid in the accurate 
diagnosis and prognosis of diseases. Future research will produce accurate early 
prediction and diagnosis of one of the fatal diseases.
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3.1  INTRODUCTION

Alzheimer’s disease (AD) [1], a neurological condition that gradually decreases 
cognitive abilities and memory, is the primary cause of dementia in the elderly [2]. 
According to the 2022 world Alzheimer’s report, AD is one of the top seven causes 
of mortality worldwide with 12.7 million adults aged sixty-five and older expected 
to be diagnosed with AD by 2050. In China, AD poses a significant challenge due to 
its large elderly population [3]. A recent nationwide study identifies AD as the fifth 
leading cause of death in China, affecting 15.07 million people aged sixty and above. 
The financial burden of treating AD in China is projected to increase dramatically, 
rising from 167.74 billion USD in 2015 to an estimated 1.8 trillion USD by 2050.

Cognitive decline and progressive memory loss are characteristic symptoms of 
Alzheimer’s disease, a neurodegenerative illness. Although its exact cause remains 
unclear, numerous factors including age, genetics, untreated depression, lifestyle 
choices, severe head trauma, and chronic hypertension have been linked to its onset. 
Several therapeutic approaches might help slow the progression of AD symptoms 
and reduce memory loss. Early detection of AD is crucial to optimizing treatment 
outcomes and enhancing the quality of life for those affected. Neuroimaging tech-
niques including positron emission tomography (PET) and magnetic resonance 
imaging (MRI) [4, 5, 6], have been widely used to identify AD [7, 8]. However, 
analyzing these complex brain images demands substantial time and resources. To 
address this challenge, computer-aided diagnostic methods have been developed to 
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automate biomarker detection. Machine learning (ML) has emerged as a powerful 
tool for AD detection, particularly in managing large, complex datasets [9, 10].

While traditional ML methods show promise, their reliance on manual feature 
extraction limits their effectiveness. Convolutional neural networks (CNNs), a form 
of deep learning (DL), offer a significant advantage by automatically extracting 
high-level features from input data, thereby enhancing diagnostic accuracy for AD. 
However, a major challenge is obtaining sufficient labeled training data. Additionally, 
domain shifts—resulting from variations in scanning devices, imaging techniques, 
locations, or modalities—can hinder the assumption that training and testing sets 
share the same data distribution, as is often presumed in classical learning methods. 
This domain shift can lead to suboptimal generalization when a model trained in one 
domain is applied to another.

In this chapter, we introduce three deep learning models, ResNet50, CNN, and 
MobileNet, for AD diagnosis. By integrating deep learning and transfer learning, 
this approach aims to improve the accuracy and efficiency of AD diagnosis.

3.2  LITERATURE REVIEW

ML is rapidly becoming a powerful tool for data analysis and innovation in medi-
cal research. An increasing number of healthcare research projects are utilizing 
ML approaches to address various challenges. Recent research by Bedi et al. [11] 
demonstrates the effectiveness of decision trees in predicting Alzheimer’s disease, 
achieving impressive accuracy of 96.97% using medical histories and brain scans, 
highlighting the potential of ML models for early disease identification. Emmanuel 
et  al. [12] identified a non-amyloid biomarker panel for early AD detection using 
ML, including significant proteins like BNP, ApoE, and A2M. The model achieved 
AUC of 0.80, with over 80% sensitivity and 70% specificity at the initial stage, dem-
onstrating remarkable performance.

Kapoor et al. [13] conducted a comprehensive comparison of SVM, LDA, PCA, 
and VGG16, for classifying and predicting Alzheimer’s disease, illustrating the 
accuracy and effectiveness of these techniques. Yu et al. [14] presented an innovative 
multimodal approach that combined genetic data with EEG signals for Alzheimer’s 
classification. Using SVM, this integrated approach achieved impressive accuracy of 
92%, significantly enhancing early detection. Banu et al. [15] made notable advances 
in the early diagnosis of AD using the Open Access Series of Imaging Studies 
(OASIS) dataset and advanced ML techniques, with their model achieving a valida-
tion accuracy of over 90%, outperforming previous studies. In recent comparative 
research by Jha et al. [16], the multilayer perceptron (MLP) model demonstrated the 
highest performance on the OASIS dataset for Alzheimer’s identification, with an 
accuracy of 95%. Other models, including Random Forest, XGBoost, CatBoost, and 
Logistic Regression, also performed well, with accuracies of 85%, 87%, 83%, and 
89%, respectively.

Deepika et al. explored the use of ensemble learning methods for Alzheimer’s 
disease prediction. Their research showed that ensemble approaches that combine 
predictions from multiple classifiers greatly enhance model accuracy and reliability, 
making them valuable for improving predictive outcomes in this field [17]. Yang 
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et al. demonstrated the transformative potential of ML in AD diagnosis. Using the 
OASIS dataset, which includes brain MRI scans and clinical assessments, ML algo-
rithms proved to be more accurate and efficient than traditional methods like the 
MoCA assessment [18].

Kanna et al. [19] achieved considerable progress in early AD detection by inte-
grating cognitive, neuropsychological, and neuroimaging data with advanced ML 
algorithms. The substantial improvement in diagnostic accuracy achieved with this 
multimodal approach underscores the potential of combining diverse data sources to 
improve patient outcomes. Dasu et al. [20] employed a hybrid ML strategy utilizing 
SVM, KNN, and decision tree algorithms with MRI scans from a publicly accessible 
database to identify AD and achieved impressive accuracy of 95%, surpassing previ-
ous research in this domain.

3.3  MATERIALS AND METHODS

3.3.1 B rain Imaging

Brain imaging is categorized as structural or functional [21]. Structural imaging 
gives information on the physical structure of the brain, including its neurons, glial 
cells, and synapses. Conversely, functional imaging focuses on the actions and pro-
cesses of the brain.

3.3.1.1  Neuroimaging Techniques for AD Diagnosis
Neuroimaging techniques play a crucial role in AD diagnosis, with MRI being 
highly common; MRI does not expose patients to dangerous radiation, in contrast 
to radioactive tracers or X-rays. Structural MRI (sMRI) (see Figure 3.1) produces 
exquisitely detailed, high-resolution 2D and 3D pictures of brain regions by using 
radio waves and magnetic fields; sMRI can identify brain degeneration, a hallmark 
of AD marked by the loss of tissue, cells, neurons, and other essential components, 
by assessing brain volumes in vivo [22, 23].

Functional MRI (fMRI) offers essential information on brain activity, whereas 
structural MRI is good at evaluating brain volume. Accessing the human primary 

FIGURE 3.1  Sample structural MRI image for Alzheimer’s disease classification [23].
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visual cortex and mapping the topography of the brain have been made possible 
because in large part to fMRI. It provides a sensitive window into the metabolic 
activities of the brain, including cerebral blood flow and oxygen consumption, 
through the observation of variations in blood oxygenation levels (see Figure 3.2) 
[24, 25].

Another neuroimaging technique, PET, uses radiotracers such as amyloid and 
fluorodeoxyglucose tracers to detect amyloid plaques and analyze brain glucose 
metabolism. This method provides useful information on how the brain works, 
remembers, thinks, listens, and observes the world [26, 27] (see Figure  3.3). 
Essentially, PET tells us how effectively the underlying brain activity supports these 
processes.

Diffusion tensor imaging (DTI) is a specialized MRI method that provides 
valuable information on the abnormal diffusion patterns typical of AD, as seen 
in Figure 3.4. DTI can evaluate the integrity of white matter and spot AD-related 
abnormalities in brain connections by examining the flow of water inside the 

FIGURE 3.2  Sample functional MRI sample image for Alzheimer’s disease classification [25].

FIGURE 3.3  Sample PET image for Alzheimer’s disease classification [27].
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brain at the microstructural level [28, 29]. Because of this, DTI could potentially 
serve as a diagnostic tool for AD by identifying these abnormal patterns of water 
diffusion.

3.3.2  Data Sources

With this work, we focused on preprocessed MRI pictures from a Kaggle source, 
whereas many previous researchers focused on datasets like ADNI and OASIS, 
which employ many imaging modalities. We investigated the underused potential of 
the DenseNet design, departing from conventional procedures. Our method simpli-
fies the classification process by concentrating on only three classes, in contrast to 
the many output classes in much previous research.

3.3.3  Data Acquisition and Preprocessing

The three AD classes we investigated were no dementia, mild dementia, and very 
mild dementia, and we used brain MRI data obtained from a Kaggle competition; 
we excluded moderate dementia because we had insufficient data. The 6400 pictures 
in the collection correspond to two hundred patients, each of whom had thirty-two 
MRI slices. To comply with model specifications, we scaled these grayscale images, 
which were initially 176 × 208 pixels, to 224 × 224 pixels.

Data preprocessing involved normalization, pixel value scaling to a range of 0–1, 
and data augmentation using Keras ImageDataGenerator to improve model gener-
alization via transformations like rotations and flips. The preprocessing allowed for 
accurately categorizing AD by stage, which guaranteed the best possible image qual-
ity for deep learning models. Table 3.1 shows how the dataset is divided into training 
and testing sets and distributed among the three categories.

FIGURE 3.4  Sample DTI image for Alzheimer’s disease classification [29].
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3.3.4 CNN

CNN is a well-known DL architecture that performs very well in tasks involving 
image identification and classification [30]. CNN includes multiple layers including a 
classifier layer, convolutional layers, pooling layers, activation layers, and fully con-
nected layers; to provide precise and effective classification, these layers collaborate 
to extract and learn hierarchical characteristics from input images. The convolution 
layer is a key part of CNN, which is in charge of feature extraction. The convolution 
layer recovers appropriate features from the input image by applying learnt filters or 
kernels of certain sizes [31].

For the network to acquire intricate patterns, activation functions like the sigmoid, 
rectified linear unit (ReLU), and hyperbolic tangent (Tanh) are essential for adding 
nonlinearity [32]. Depending on the input value, these functions decide whether to 
activate a neuron. When the input is above a certain threshold, a neuron is activated; 
if not, it is deactivated.

Pooling layers are essential for dimensionality reduction, while convolution layers 
concentrate on feature extraction. Methods like average pooling and max pooling 
reduce computational complexity while maintaining important characteristics by 
condensing the information into a small area of the feature map [33]. The network 
can integrate and analyze the retrieved characteristics because fully linked layers 
create connections concerning all the neurons in the current layer and all the neurons 
in the layer before. The classifier layer then provides the final classification result by 
determining which class or label has the greatest probability [34]. CNNs’ remarkable 
effectiveness in classification problems is a result of their capacity to manage enor-
mous datasets efficiently [35]. This capability stems from their ability to automati-
cally learn relevant details from the supplied data and their hierarchical structure.

3.3.5 R esNet50

ResNet50, a 50-layer deep residual network, was used to categorize clinical demen-
tia ratings using just MRI data. TensorFlow served as the backend for the Keras 
implementation of the model. ResNet50 was created especially to solve the van-
ishing gradient issue that can arise in CNNs during the backpropagation phase. 
Effective learning is hampered in initial layers of deep networks as the signal needed 
to update weights diminishes. Residual connections enable the network to learn 

TABLE 3.1
Distribution of AD by Category

Class Training Testing

No dementia 2550 630

Very mild dementia 1787 443

Mild dementia 712 174

Total 5049 1247
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residual functions rather than the whole mapping and help to reduce this problem 
[36]. As explained in [37], the ResNet50 design is made up of many residual blocks 
that efficiently stack layers without experiencing the degradation that comes with 
training very deep networks. Using categorical cross-entropy as the loss function, 
the model was trained.

3.3.6 M obileNet

MobileNet, a convolutional neural network designed for efficient deployment on 
mobile and embedded devices, prioritizes minimizing computational complexity 
without compromising performance [38].

It achieves this efficiency through depth-wise separable convolutions, which 
decompose standard convolutions into two stages: depth-wise convolutions applied 
independently to each input channel and point-wise convolutions that combine the 
outputs. This significantly reduces parameters and multiplications, resulting in a 
compact and computationally efficient model. MobileNet’s architecture includes 
neural network layers like dropout layers for over fitting prevention and softmax acti-
vations for classification. Additional hyperparameters: width, resolution coefficient, 
allow for additional control through fine-tuning filter numbers and input resolutions 
resulting in better accuracy to computational complexity trade-offs. MobileNet is 
simple and lightweight architecture, and it can be implemented with more or less 
complexity depending on the requirements of the application [38]. Several studies 
[39–52] have been conducted to explore the deep learning, machine learning and 
artificial intelligence techniques for detecting the diseases using various algorithms.

3.3.7 C omputational Methodology

Figure  3.5 shows the full procedure of a DL approach to AD prediction. As we 
discussed, our aim with the work for this chapter was to develop a robust algorithm 
that could accurately predicting AD at diverse stages using ResNet50, CNN, and 
MobileNet. First, we acquired the AD images; then, we performed the image pre-
processing to normalize the data and check data quality. Specifically, we changed 
the shape of all the images to a particular size such as 224 × 224 and then used a 
formula to make the image pixel values nearly normal; if the image had more than 
three colors, we converted it to three shades of gray. Additionally, we used rotation, 
zooming, flipping, and change of brightness to increase the richness of the dataset 
for training and improve model generalization.

Following the data augmentation, we divided the dataset into three subsets: train-
ing (70%), validation (15 %), and test (15%). The split allowed for assessing model 
performance under different development conditions. The three DL architectures 
we employed were ResNet50, a pretrained model that was refined through transfer 
learning; a custom CNN; and MobileNet, a lightweight architecture that can be used 
in mobile and embedded devices. We built all three to the training set and evaluated 
them with the validation set to allow the model to be adjustable and functional.

Because each model showed different performance, we conducted hyperparam-
eter tuning for each, changing the learning rate, batch size, and numbers of epochs 
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and layers; this optimization was important for achieving their predictive capability. 
After model training and tuning, we tested them on the test dataset. We used simple 
performance measures that could be obtained from a confusion matrix: accuracy, 
precision, recall, and F1 score to evaluate how well the models performed in dis-
tinguishing the stages of AD. These metrics provided bases not only for comparing 
and estimating the merits of the models but also for checking whether the models 
successfully handled unseen data.

Finally, we tested the experimental models with AD images for the test popula-
tion. The models all gave different results, but the outcomes did reflect the promising 
advantages of using DL in AD detection. Despite the models’ differing performance 
measures, these results underlined the significance of careful model selection and 
improvement. Because data augmentation, model selection, and hyperparameter 
tuning were all implemented, the models generated accurate and precise prediction, 
providing a foundation for further refinement and employment in medical diagnosis. 
Figure 3.5 illustrates the mechanisms by which the system predicted AD.

FIGURE 3.5  The flow of Alzheimer’s disease prediction.
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3.4  EVALUATION METRICS FOR CLASSIFICATION MODELS

Of the few most common metrics for evaluating classification, the simplest statistic is 
accuracy, the number of correct estimates divided by the total number of predictions. 
Precision, another metric, refers to the percentage of correct positive estimates and 
is calculated by dividing the number of true positives by the total number of false 
positives and true positives. The percentage of true positive instances that are accu-
rately estimated is known as recall. F1 is a balanced indicator of accuracy and recall 
that is calculated as the harmonic mean of the two. The ROC curve’s summary, or 
AUC (area under the curve), shows how well the model can differentiate between 
classes. A graph that shows the model’s performance at various threshold settings is 
called a ROC curve. Table 3.2 shows the classification metrics used for evaluating 
the models.

3.5  RESULTS AND DISCUSSIONS

We built and trained the model using the Keras library together with TensorFlow 
back-end. The tests were conducted on a Dell Intel Core i9 computer with 16 GB 
RAM. We trained the model on a 16 GB dedicated memory NVIDIA GeForce GtkΥ 
GTX 540 M GPU for advanced computations. This hardware setup supported train-
ing and assessing the DL models.

3.5.1 C onfusion Matrix Analysis for AD Patient Classification

True Positive, False Positive, True Negative and False Negative are the most com-
monly used measures for evaluation of the classification models; these measurements 
indicate a model’s accuracy, precision, recall, and F1. Figures 3.6–3.8, respectively, 
show the confusion matrices for the CNN, MobileNet, and ResNet models. Accuracy 
matrices illustrate the correct and incorrect predictions of the model for each class, 
based on the nine classification matrices, providing a visual representation of the 
model’s performance.

TABLE 3.2
Performance Metrics Used to Test the Models

S. No. Classification Metrics

1 Accuracy=
+

+
TruePositives TrueNegatives

TruePositive TrueNegatiives FalsePositive FalseNegative+ +

2 Recall=
+

TruePositives

TruePositive FalseNegative

3 F Score1 2_ =
+

*
Precision *Recall

Precision Recall

4 Precision=
+

TruePositives

TruePositive FalsePositive
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FIGURE 3.6  CNN model confusion matrix for AD classification.

FIGURE 3.7  MobileNet model confusion matrix for AD classification.
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3.5.2 ROC  Curve Analysis for AD Classification

An ROC curve evaluates the identification accuracy of a classification model by plot-
ting the true positive rate (TPR) or sensitivity against the false positive rate (FPR) or 
(1-specificity) by varying the thresholds. The model’s overall capacity to distinguish 
between classes is measured by AUC; values nearer 1 indicate better performance. 
When evaluating many models and choosing the best threshold that strikes a com-
promise between sensitivity and specificity according to particular clinical require-
ments, ROC curves are extremely helpful. The ROC curves for the CNN, MobileNet, 
and ResNet models are shown in Figures 3.9–3.11, respectively. In all three figures, 
Class 0: no dementia, Class 1: very mild dementia, Class2: Mild-Demented (MD).

3.5.3 P recision–Recall Curve Analysis for AD Classification

In a multiclass classification task such predicting the phases of Alzheimer’s disease, the 
precision–recall (PR) curve is a graphical representation that shows the trade-off between 
accuracy and recall for each class. Plotting accuracy vs recall at different classification 
thresholds allows each curve to depict the performance for a particular class. This makes 
it possible to directly compare the efficacy of the models and identify the most useful. 
PR curves that are oriented to the top right indicate large and high-quality models with 
optimal accuracy and recall for a skewed range of classification thresholds. This implies 
that the probability of detecting false positives and false negatives can be reduced while 
the model remains capable of accurately detecting positive cases. Figures 3.12–3.14 pres-
ent the PR curves of the CNN, MobileNet, and ResNet models, respectively.

FIGURE 3.8  ResNet model confusion matrix for AD classification.
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FIGURE 3.9  CNN model ROC curve for AD classification.

FIGURE 3.10  MobileNet model ROC curve for AD classification.
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FIGURE 3.11  ResNet model ROC curve for AD classification.

FIGURE 3.12  CNN model PR curve for AD classification.
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FIGURE 3.13  MobileNet model PR curve for AD classification.

FIGURE 3.14  ResNet model PR curve for AD classification.
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3.5.4 F inal Model Performance for AD Classification

The ResNet, CNN, and MobileNet models in reveals significant differences in per-
formance metrics for dementia classification. ResNet achieved the highest overall 
accuracy at 92%, with precision, recall, and F1 of 0.93, 0.90, and 0.91, respectively, 
for the non-demented class (support = 630); 0.92, 0.92, and 0.92 for very mild demen-
tia (support = 443); 0.91, 0.95, and 0.93 for mild dementia (support = 174). Table 3.3 
shows the full results.

3.6  CONCLUSIONS

In our work for this chapter, we thoroughly tested three deep learning models, ResNet, 
CNN, and MobileNet, for their ability to predict Alzheimer’s disease at various stages. 
The results clearly show how well ResNet performed, with balanced precision, recall, 
and F1 scores across all classes and a remarkable total accuracy of 92%. In contrast, 
CNN had overall accuracy of 85% from which it could be argued that further opti-
mization is necessary. MobileNet had an average accuracy of 89% and good but not 
excellent performance; it is an effective option in settings that are resource starved.

These findings highlight the importance of selecting the correct model in early 
AD diagnostics since timely treatment significantly depends on highly accurate 
and reliable classification. To enhance future performance, we recommend more 
advanced data augmentation and hyperparameter tuning. Additionally, combining 
algorithms in ensemble frameworks could potentially improve prediction even more.

With these findings, this study contributes to a growing wealth of information sup-
porting the positive use of deep learning approaches in forecasting neurodegenerative 

TABLE 3.3
Results for ResNet, CNN, and MobileNet

Model’s name
voAccuracy 

(%) Phase Precision Recall F1 Support

ResNet50 92 No dementia 0.93 0.90 0.91 630

Very mild dementia 0.92 0.92 0.92 443

Mild dementia 0.91 0.95 0.93 174

Accuracy 0.92 1247

CNN 85 No dementia 0.87 0.82 0.84 630

Very mild dementia 0.84 0.85 0.85 443

Mild dementia 0.83 0.89 0.86 174

Accuracy 0.85 1247

MobileNet 89 No dementia 0.90 0.88 0.89 630

Very mild dementia 0.88 0.90 0.89 443

Mild dementia 0.87 0.92 0.89 174

Accuracy 0.89 1247
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diseases. The research evidence presented in this chapter shows how technology in 
today’s world affects medical decisions with a view to improving the results.
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4.1  INTRODUCTION

Sentiment classification is a fundamental problem in natural language process-
ing that involves determining the sentiment or emotional tone communicated in a 
text (Cambria et al. 2017) in a process called sentiment analysis or opinion min-
ing. Sentiment analysis can be used for a variety of purposes, including social 
media monitoring, customer feedback analysis, and product reviews (Liu 2012). 
Deep learning network models have transformed sentiment analysis by provid-
ing stable and highly accurate approaches for automating sentiment classification 
tasks (Zhang et al. 2019). This research provides the basic concepts and motives 
underlying sentiment classification analysis using deep learning network models 
(Cambria et al. 2017). In this chapter, we elaborate on the importance of sentiment 
analysis, its difficulties, and how deep learning techniques have arisen as a power-
ful solution.

For instance, regarding importance, massive amounts textual data are generated 
on social media, e-commerce platforms, news outlets, and other online sources in 
today’s digital age (Liu 2012). Businesses, organizations, and scholars must under-
stand the sentiments communicated in this data. Sentiment analysis acquires insights 
into public opinion and client happiness and forecasts market trends. The major chal-
lenge with sentiment analysis of online-generated data is detecting the emotional 
nuances such as sarcasm and irony without knowing the context. When dealing with 
the complexities of natural language, traditional rule-based systems frequently fall 
short, making deep learning an appealing answer.

As a response to the challenges, deep learning is a subset of machine learning 
that has significantly improved sentiment analysis. Deep neural networks (Zhang 
et al. 2019), specifically recurrent neural networks (RNNs) (Can, Ezen-Can, and Can 
2018), convolutional neural networks (CNNs) (Kane et al. 2021), and transformers 
have been effective in capturing the subtle patterns and dependencies (Tang et al., 
2016) seen in text data. These algorithms can learn and adapt to the intricacies of 
human language resulting in increased sentiment categorization accuracy.

4
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Deep learning network models (Zhang et al. 2019) can be used for a variety of 
sentiment analysis tasks (Zhu et al. 2022), such as binary (J. Zhou et al. 2019), mul-
ticlass (Uysal and Gunal 2014), aspect-based (Dalal 2017), and fine-grained (Zirn, 
Niepert, et  al. 2011) sentiment classification. Sentiment categorization analysis is 
used in a variety of businesses, from marketing and customer service to political 
polls and brand management. Deep learning models (Tang, Qin, and Liu 2016) have 
the ability to automate sentiment analysis at scale, making them an effective tool 
for making decisions and gaining insights from enormous amounts of textual data.

The task of evaluating consumers’ attitudes toward various topics (movies, prod-
ucts, music albums, etc.) and extracting opinions from them is challenging. Emotions 
are described more specifically as emotional decisions, thoughts, acts, or mental 
states. This is an automated procedure in which subjective data are calculated, 
assessed, and predicted as good, bad, or neutral to provide the author’s view of the 
text (Hussein 2018). There are some specific terms related to opinion analysis such as 
in-depth opinion evaluation, which offers more than just a binary (positive or nega-
tive) classification of observations. Emotion recognition in the text refers to identify-
ing and managing emotions such as anxiety, worry, grief, excitement, contempt, and 
so on. Complex machine learning techniques are utilized to recognize varied behav-
iors for a variety of applications (Suhasini and Srinivasu 2020). Finally, opinion-
based analysis groups articles into categories and then assigns views to each (Kang, 
Ahn, and Lee 2018), for example a mobile camera that receives positive reviews for 
being very good but negative reviews for being highly expensive.

Because of the nature of context, opinion analysis is frequently employed by 
customer-focused businesses to better understand their demands (Hajek and Munk 
2023). Many interactive and user-friendly social media platforms and websites cater 
to online businesses seeking customer feedback on their products and services. 
Consumers also wish to see how other people rated the particular product to help 
them make shopping decisions. Therefore, there is a critical need to create appropri-
ate procedures and processes to aid in quality assurance. This validation process’s 
design and execution necessitate the use of strong analysis techniques. Once general 
patterns are presented to the condition check system, which may be trained and used 
for further analysis, fact-checking can be performed. The model must be efficient to 
improve the accuracy of the validation process. Furthermore, the opinion consider-
ation is determined by the nature of the questions and the nature of the analysis. As 
a result, a general model must be developed.

4.1.1 R esearch Problems

Sentiment analysis, also known as opinion mining, is important in comprehending 
and extracting views, emotions, and attitudes from textual data (Hussein 2018). Deep 
learning networks have dramatically increased sentiment classification accuracy and 
have become a focus point in natural language processing (Tang, Qin, and Liu 2016). 
However, there are numerous hurdles and potential for continued development in this 
subject. The goal of this research is to improve sentiment categorization analysis by 
addressing specific challenges and presenting novel solutions within the context of 
deep learning network models.
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Deep learning models for fine-grained sentiment analysis go beyond detecting sim-
ple positive or negative sentiments to distinguish neutral, mixed, or varying levels of 
intensity within these categories (Tang, Qin, and Liu 2016; Zirn, Niepert, et al. 2011). 
Models should be extended to accommodate sentiment analysis in many languages 
and cross-lingual transfer learning approaches should be investigated to increase 
accuracy, particularly in languages with insufficient labeled data.

Contextual sentiment analysis investigates how these models can account for con-
textual information such as sentiment change over time, user-specific situations, or 
cultural influences influencing sentiment expression. Models should reliably recog-
nize and categorize sarcastic or ironic statements, which are frequently misclassified 
in normal sentiment analysis. Sentiment analysis must include emotion recognition, 
allowing for the separation of emotions such as happiness, anger, and sadness, in 
addition to overall sentiment.

Data efficiency and generalization refer to optimizing models to use less labeled 
data for training and generalize effectively across domains and themes. Semi-
supervised and self-supervised learning create strategies for improving sentiment 
analysis performance by leveraging unlabeled data (Suhasini and Srinivasu 2020). 
Tailored sentiment analysis should be specific to user preferences by modifying 
models to individual users’ unique sentiment expressions. Addressing these research 
issues can help in developing advanced deep learning models for sentiment analysis, 
making them more accurate, adaptable, and ethically responsible.

4.1.2 R esearch Goals

The goal of this research is to investigate the general frameworks for emotional 
assessment. It makes two significant contributions: We demonstrate that CNNs 
(Zhou and Long 2018) and vector algorithms can be used to develop models that can 
be trained once using data-driven methods and then used for other datasets, and we 
compare their performance using different accuracy metrics with that of other state-
of-the-art algorithms in the same dataset. This is one of the few investigations on the 
independence of deep neural models.

4.2  RELATED WORKS

Despite extensive research in linguistics and natural language processing (Liu 2012), 
only a few articles were published before 2000. After a few years, this topic capti-
vated the attention of different scholars and research groups. Concept analysis can 
describe the theory and relationship of each object or semantics. The probability 
method is used to discover the pattern of each review, which group it belongs to, and 
where it sends the opinion.

A self-directed classification system can use supervised machine learning algo-
rithms to classify emotions at the clause level, including discrimination from mul-
tiple sources (Pathan and Prakash 2022). Implicit appearance assessment methods 
do not require the use of prefixes associated with specific objects. Authors of one 
study analyzed the context of words to identify their similarities and differences 
(Mehanna and Mahmuddin 2021). Kumar et  al. (2021) developed a new tracking 
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strategy with features for identifying useful reviews and recover new features for 
accurately measuring emotional polarity. Natural language processing algorithms 
leverage acquisition features to review both supervised and semi-supervised text 
classification strategies (Hu et al. 2013). Table 4.1 provides a detailed description of 
different methods used for sentiment analysis using three separate datasets.

4.2.1 M ethods

The purpose of conditional random fields (CRFs) is to create a sequence-labeling 
model for aspect phrase extraction. CRFs compute probabilities based on observable 
sequences. The observed sequence, known as features, serves as an input for the 
model. CRF creates conditional probabilities based on these features (Dalal Hardik 
2017). The possibility of a label appearing in a sequence is determined by the cur-
rent, previous, and future sequences.

Latent Dirichlet allocation is a topic-modeling technique that assumes the exis-
tence of an underlying mechanism responsible for generating documents within a 
corpus; during the generating process, it is initially assumed that the number of 
subjects in a corpus is already known. A topic distribution is constructed for each 
article, using a Dirichlet distribution with varying parameters. The topic distribu-
tion is represented as an n-dimensional vector, where each element in the vector 
is a nonnegative value that sums up to one. A subject is assigned to each word in 
the document based on its related dimensional vector. After choosing the topic, the 
word can be selected using the word probability matrix. Each element in the matrix 
represents the likelihood of selecting a specific word from a chosen topic (Suryadi 
and Imran 2022).

Markov logic is employed in the maximum entropy model. Markov logic is an 
analytical framework that incorporates statistical and structural traits. The frame-
work offers a means of representing comprehensive sentiment analysis involving 
many lexicons and linguistic relationships in a formal language (Zirn, Niepert, et al. 

TABLE 4.1
Methods of Aspect-Level Sentiment Analysis

Dataset  Methods

Hotel reviews (Suryadi and 
Imran 2022)

Aspect recognition and sentiment analysis using conditional random 
fields (Dalal Hardik 2017)

Grouping sentiment information based on probabilistic topic modeling 
(Suryadi and Imran 2022)

Product reviews (Li et al. 2021) Latent feature rating analysis model (Hongning Wang 2011)
Markov logic for sentiment classification (Kang, Ahn, and Lee 2018)

Movie reviews (Tsutsumi, 
Shimada, and Endo 2007)

Maximum entropy with SVM (Nasim and Ghani 2020)
Unigrams and bigrams (Lahkar and Singh 2022)

Lexicon-based approach (Ding, Liu, and Yu 2008)

Dictionary-based approach (Bhowmik, Arifuzzaman, and Mondal 2022)
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2011). Latent aspect rating analysis (LARA) is the process of figuring out opinion 
ratings on key aspects and evaluating the relative importance that reviewers assign to 
each aspect by analyzing the content of reviews and resulting overall ratings. LARA 
is a unified generative model that can recognize implicit contextual aspects, rat-
ings associated with each aspect, and the weights assigned to numerous aspects by 
a reviewer. This does not require pre-specified feature keywords (Hongning Wang 
2011).

Dictionary-based (Bhowmik, Arifuzzaman, and Mondal 2022) ways to sentiment 
lexicon construction (Ahmed, Chen, and Li 2020) do not need massive corpora or 
search engines with special capabilities. Instead, they exploit on-the-market writ-
ing resources like WordNet (Raza et al. 2023). Accurate, domain-independent, and 
comprehensive lists of words and their senses will be created by these methods. 
Dictionary-based approaches measure the views from the given text (Hussein 2018). 
Sentiments can have a binary classification (Medhat, Hassan, and Korashy 2014), but 
normally, they are expanded to specify worried, sad, happy, angry, etc., which they 
accomplish by aggregating the adjective words through WordNet or any wordbook. 
Adjective word contains polarity that is appointed by the sentiment wordbook. The 
terms “unigram,” “bigram,” and “trigram” (Lahkar and Singh 2022) respectively 
denote taking one word at a time, two words at a time, and three words at a time for 
feature extraction (Lahkar and Singh 2022).

Table 4.2 summarizes the critical roles of CNNs (Kim 2014) and vector algorithms 
(Tharwat 2019) in sentiment analysis. CNNs provide efficient methods for extracting 
features and learning hierarchical representations from text input, whereas vector 
algorithms, particularly Word2Vec (Jezek, Toman, and Tesar 2006), are useful for 
embedding words, phrases, and documents into continuous vector spaces.

Combining these technologies enables creating data-driven sentiment analysis 
models capable of capturing complicated linguistic patterns and generalizing well 
across multiple data sources, hence improving the accuracy and efficiency of senti-
ment analysis applications.

TABLE 4.2
Studies on Using CNN and Vector Algorithm for Sentiment Analysis

Author (Year) Approach Technique

Kim (2014) Pretrained word vectors and CNNs to capture 
hierarchical features in text data

CNN

Zhang et al. (2019) Text classification by character-level 
convolutional networks

CNN

Marcheggiani et al. (2014) Word2Vec representations of words Vector algorithm

Li et al. (2021) Vector representation of words Vector algorithm

Socher et al. (2013) CNNs and Word2Vec representations of words CNN + vector algorithm

Tang et al. Gated recurrent neural networks (RNNs) with 
pretrained embeddings

CNN+Vector Algorithm
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However, there are some hurdles and outstanding research questions related to 
using CNNs and vector algorithms in sentiment analysis. For instance, as models 
must generalize effectively across diverse forms of text, data imbalance and diversity 
of data sources and domains is a difficulty. The selection of the hyperparameters 
such as filter widths and depths is also critical and depends on the sentiment analysis 
task at hand. Tuning these hyperparameters can be difficult and time-consuming. It 
also remains an outstanding research question whether the models can effectively 
transfer knowledge across disciplines.

Developing strategies to make sentiment analysis techniques more interpretable 
and transparent, particularly in high-stakes decision-making applications, is a con-
tinuing issue. It is difficult to achieve low-latency, high-throughput processing while 
preserving accuracy, especially with large CNN models. Another important study 
issue is dealing with low-resource languages while maintaining good accuracy across 
varied linguistic situations. Models should not overfit training data and should be able 
to adapt to changing language patterns. Individualized fine-tuning is also an issue.

4.3  APPROACH

In this section, we discuss a variety of neural networks that we evaluated to train and 
test the neural model using the IMDB, Movie Review, and Amazon Review datasets 
respectively. The following classifiers are discussed below-

4.3.1 CNN

CNN (Kane et al. 2021) is a feed network model that uses a variety of convolutional 
filtering techniques and subsampling processes along with completely intercon-
nected strategies. LeNet-5CNN serves as the cornerstone for most CNN applications 
for object recognition, geography, and prediction. To use the CNN model, the analy-
sis’s output vector must first be turned into a matrix (LeCun Yann 1988). A CNN 
model consists of one convolution layer (LeCun Yann 1988), one subsampling layer 
(Zhou and Long 2018), and one output layer. Using five (2 2) filters, a distinct map 
is generated based on the scaled exponential linear unit (He and Abisado 2024) 
function. The subsampling layer also spatially parses the generated feature maps. 
Postprocessing is composed of three layers, and all three levels perform categoriza-
tion using CNN models.

4.3.2 A dvanced Neural Networks

Classification theory can be used in neural models to remember that the hidden 
layer of the neural model receives the vector algorithm’s output vector first. This 
layer includes three neurons as well as a hyperbolic activation function (Duyu, Bing, 
and Ting 2016). The output layer configuration consists of the softmax activation 
function (Zhang et al. 2019), the Adam optimizer (Es-sabery et al. 2022), and the 
cross-entropy loss function (Jnoub, Al Machot, and Klas 2020). When choosing 
parameters with the scikit-learn package’s search grid, these two functions are used 
as the loss function.



Sentiment Classification Analysis Using Deep Learning Models� 79

4.3.3 O ther Classifiers

Other classifiers include support vector machine (SVM) (Tharwat 2019), k-near-
est neighbors (KNN) (Sham and Mohamed 2022), naïve Bayes (Khan and Junejo 
2020), and random forest (Machová, Mach, and Adamišín 2022) and have all been 
investigated to compare performance. Using a prior distribution offers several 
advantages, such as enabling random forests to identify diverse, high-variance 
patterns while mitigating weak decision trees, as well as the capacity to change 
them into models with reduced volatility and bias. KNN, on the other hand, is an 
algorithm that retains all current samples while classifying new scenes based on 
their similarity measurements (Eng, Ibn Nawab, and Shahiduzzaman 2021). KNN 
has been utilized as a nonparametric model for prediction and pattern recogni-
tion (Pradhan, Senapati, and Sahu 2022). SVM (poly) with polynomial kernel and 
SVM (rbf) are well-known for their capacity to handle nonlinear data due to their 
nonlinear cores.

4.3.4 E valuation Metrics

Researchers have used a variety of performance measures to measure the overall 
performance of individual components. Accuracy is the most commonly used per-
formance metric to demonstrate that “out of all the predictions how many are true?” 
Precision gives the ratio of true positives to the total positives based on the model 
prediction. Recall determines how good the model is at measuring all the positives. 
F1 is the combination of recall and precision and measures how effectively the mod-
els make the trade-off. Equations (4.1)– (4.4) calculate accuracy, precision, recall, 
and F1 (Sanagar and Gupta 2020), where TP, TN, FP, and FN represent true positive, 
true negative, false positive, and false negative (HaCohen-Kerner, Miller, and Yigal 
2020), respectively.
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We considered two scenarios in the evaluations: domain dependent (Ahmed, Chen, 
and Li 2020) and domain independent (Jnoub, Al Machot, and Klas 2020). For 
the domain-dependent evaluation, we used each dataset for training and testing 
(Geethapriya and Valli 2021). For the domain-independent evaluation, one dataset 
is used for training and testing takes place with different datasets. We trained the 
models on the dataset by Shaukat et al. (2020) because it is vast, which can enable a 
more generalized model if correctly performed and regularized.
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4.4  RESULTS AND DISCUSSION

Tables 4.3 and 4.4 present the performance analysis of our advanced neural network 
model (ANN) based on Equations (4.1)– (4.4) compared with a CNN model using 
datasets from IMDb (Shaukat et al. 2020), movie reviews (Tsutsumi, Shimada, and 
Endo 2007), and Amazon.com (Li et al. 2021).

The two tables reflect that both models outperformed the various baseline methods but 
were the second-best classifiers overall. In specific, SVM with radial basis function kernels 
performed well on the IMDB dataset, while naïve Bayes performed better on the Amazon 
dataset. For all three datasets, our ANN model outperformed the CNN model and strongly 
predicted behavior classification. However, some classifications achieved high precision 
but offered generally low payoff for prediction; in contrast, high precision (Socher et al. 
2013) corresponds to lower recall and a more negative impact. These results overall high-
light the complexity of the task and demonstrates the effectiveness of neural models.

We identified some interesting facts in our research findings. For instance, the final 
evaluation of several sentences will lead to drawing conclusions that focus on specific 
aspects rather than treating them all as a single area of interest. For example, a critic 
could have liked the acting and overall plot of a film but have been displeased with 
the soundtrack in some sequences. It also became clear that emotions can be com-
municated in many ways, including indirect speech, and that they therefore must be 
divided using a rational method, and we established that pattern analysis with com-
plex sentences is difficult, especially when there is disagreement among words. We 
learned from our work that CNNs could overcome many of these common theoretical 
problems. CNNs can identify and transform spatial information hierarchy, which here 
captured the grammar of the different users of the analyzed texts. A good pairwise 
analysis, especially a standalone analysis, can lose its relevance. With neural net-
works, it is now possible to classify hundreds of objects before training the model.

TABLE 4.3
Performance Metrics for the ANN Model

Dataset Precision Recall F1 Accuracy

IMDB 87% 87% 87% 87%

Movie reviews 82% 82%  82% 82%

Amazon reviews 77% 76% 74% 74%

TABLE 4.4
Performance Metrics for the CNN Model

Classifier Precision Recall F1 Accuracy

IMDB 81% 81% 81% 81%

Movie reviews 75% 75% 75% 75%

Amazon reviews 67% 67% 67% 68%

http://Amazon.com
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4.5  CONCLUSIONS

With the study for this chapter, we looked at a broad sentiment analysis approach 
that could detect emotion in a wide range of documents. Neural models remove 
strong characteristics by employing the vector process to transform the analysis to 
the correct input vectors, and they are excellent at generalization and categoriza-
tion. In our comparisons of models, the CNN and ANN models both outperformed 
earlier research using the same data and demonstrated generalizability across 
assumption distributions. The models could be trained on one dataset and tested on 
different sets from different sources. Furthermore, future researchers could aim to 
adapt the methods here across multiple platforms to optimize the performance of 
neural models.
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5.1  INTRODUCTION

Herbal medicines, often regarded as natural and safe alternatives to synthetic drugs, 
have been a cornerstone of traditional medicine for centuries. In recent decades, 
their use has surged worldwide, with many individuals incorporating herbal rem-
edies alongside prescribed pharmaceutical treatments. Herbal medicine and conven-
tional drug therapy represent two distinct yet interconnected pillars of healthcare, 
each with its own historical significance and therapeutic value (Dong, 2013).

Treatment with herbal medicine is rooted in traditional healing practices that span 
millennia, cultures, and civilizations and addresses a wide range of health condi-
tions. Herbal medicines use plant-derived materials such as leaves, roots, bark, flow-
ers, and seeds, and herbal remedies are often prepared as teas, tinctures, extracts, 
powders, or capsules. They can contain complex mixtures of bioactive compounds 
with diverse pharmacological effects (Saad et al., 2017). Conventional drug therapy, 
on the other hand, encompasses the use of synthetic or semi-synthetic compounds 
developed through modern pharmaceutical research processes; these drugs are rig-
orously tested for safety, efficacy, and quality control before being approved for 
clinical use. Conventional drugs typically target specific molecular pathways or bio-
logical targets involved in disease pathogenesis, and they are prescribed by health-
care professionals based on evidence-based guidelines and regulatory standards.

However, the growing trend of combining the two has raised significant concerns 
about the potential for interactions between conventional and herbal medicines—
herbal–drug interactions (HDIs)—that can compromise drug efficacy, enhance tox-
icity, or lead to unforeseen side effects. Despite being natural, herbal components 
can interact with the same enzymes, receptors, and transporters that metabolize and 
mediate the actions of pharmaceutical drugs. As the use of herbal remedies alongside 
conventional drugs becomes increasingly common in clinical practice, understand-
ing HDIs has become important. These interactions can profoundly impact treat-
ment efficacy, patient safety, and healthcare outcomes, underscoring the importance 
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of elucidating their mechanisms and predicting their occurrence (Izzo and Ernst, 
2009).

HDIs are complex because herbs contain bioactive compounds that affect various 
biological pathways, and predicting interactions is essential for preventing adverse 
effects and improving patient outcomes. One promising strategy for addressing this 
issue is mathematical and computational modeling, which provides a systematic and 
reproducible way to predict HDIs before they occur in clinical settings. By inte-
grating pharmacological knowledge, computational techniques, and large-scale data 
analysis, predictive models can identify potential interactions, assess their likelihood 
and severity, and inform clinical decision-making.

In this chapter, we explore mathematical approaches to predictive modeling, 
including pharmacokinetic (PK) modeling, machine learning (ML), and systems 
biology. These techniques offer powerful tools for forecasting interactions based on 
the chemical and biological properties of the herbs and conventional drugs, improv-
ing safety in integrative medicine practices. Our aim is to provide a comprehensive 
overview of the current state of research on predictive modeling of HDIs, highlight-
ing the methodologies, applications, challenges, and future directions in this rapidly 
evolving field.

5.2 � MATHEMATICAL APPROACHES TO THE 
PREDICTIVE MODELING OF HDIS

5.2.1 ML  Algorithms

ML algorithms are powerful tools for predictive modeling of HDIs. They allow for 
analyzing complex datasets and making predictions based on patterns and relation-
ships within the data.

5.2.1.1  Support Vector Machines
Support vector machines (SVMs) are powerful supervised ML models primarily 
used for classification and regression tasks. In classification, they are employed to 
distinguish between categories based on provided input features that can range from 
text data to biological signals. For instance, in the domain of pharmacology, SVMs 
can classify interactions between herbal remedies and drugs based on their charac-
teristics and effectively predict HDI outcomes (Nasution et al., 2019; Burbidge et al., 
2001) as follows:

	 f x y K x x b
i

n

i i i( )= ( )+
=E 1
a ,  � (5.1)

where
f x( ) is the decision function that predicts the class label of the input sample x.
ai  is the coefficient obtained during the SVM training.
yi is the class label of the training samples.
K x xi ,( ) is the kernel function that computes the similarity between x and the ith 

training sample, xi .
b is the bias term.



Predictive Modeling of Drug Interactions� 87

5.2.1.2  Random Forest
Random forest (RF) is an ensemble learning technique that builds multiple deci-
sion trees during training and predicts by taking the majority vote of the trees. This 
method is more accurate than single decision trees for classification tasks because 
it reduces the risk of overfitting. RF works by creating different subsets of data and 
features for each tree, which helps the model capture complex patterns in the dataset. 
Notably, RF better predicted HDIs and was more accurate than traditional methods 
(Shi et al., 2019). Its ability to handle complex, nonlinear relationships makes it an 
effective tool in healthcare and other domains. Overall, RF is a reliable model, offer-
ing robustness and interpretability through feature importance, making it popular in 
various fields of study:

	 y x
N

T x
i

N

i( )= ( )
=E

1
1

� (2)

where
y x( ) is the predicted class label for x.
N  is the number of decision trees in the forest.
T xi ( ) is the prediction of the ith decision tree for x.

5.2.1.3  Logistic Regression
Logistic regression is a well-known linear model frequently used for binary clas-
sification problems. Unlike linear regression, which predicts continuous outcomes, 
logistic regression focuses on estimating the probability of an event falling into one 
of two categories. It uses the logistic (or sigmoid) function to ensure that predictions 
fall between 0 and 1, representing probabilities. This makes it a practical tool for 
tasks requiring binary outcomes, such as yes/no or true/false scenarios. In the area 
of HDIs, logistic regression is useful for predicting the likelihood of an interaction 
based on key input features like the types of drugs, dosage amounts, or specific 
patient attributes (Ramos-Esquivel et al., 2017; Bazrafshani et al., 2023). Notably, 
despite its simplicity, the model’s ability to clearly interpret results and efficiently 
handle large datasets makes it a widely used technique, particularly in healthcare 
and other fields requiring binary classification tasks:
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where
p y x=( )1|  is the probability that the class label y is 1 given the input features x.
B B B0 1, ,... n are the coefficients of the logistic regression model.
x x xn1 2, ,...  are the input features.

5.2.2 P harmacokinetic/Pharmacodynamic Models

Pharmacokinetic/pharmacodynamic (PK/PD) models are crucial tools in pharma-
cology for understanding the dynamic interplay between drug concentrations (phar-
macokinetics) and their physiological effects (pharmacodynamics) on the body. 
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These models help in predicting how drugs are absorbed, distributed, metabolized, 
and excreted and how these factors relate to the drug’s therapeutic or adverse effects. 
PK/PD models are particularly valuable for simulating how both conventional phar-
maceutical drugs and herbal compounds behave within the body, allowing for bet-
ter predictions of synergistic effects, toxicity, or reduced drug efficacy. Researchers 
have used a number of PK/PD models, including compartmental, physiologically 
based pharmacokinetic (PBPK), and population-based PK models, to simulate and 
predict interactions and gain better understanding of the risks associated with com-
bining herbal supplements and prescription drugs.

5.2.3 C ompartmental Models

Compartmental models divide the body into compartments, distinct physiological or 
anatomical regions such as the bloodstream, tissues, and organs like the liver. The 
movement of drugs between these compartments is described through differential 
equations, allowing researchers to simulate how drugs are absorbed, distributed, 
metabolized, and eliminated in different regions of the body. For HDIs, compart-
mental PK/PD models have been employed to simulate the concentration–time pro-
files of herbal–pharmaceutical compounds (Sharan et al., 2012; Colom et al., 2011). 
These models predict interactions by considering key factors like metabolism (how 
the body breaks down the compounds), distribution (how the drugs move between 
compartments), and elimination (how the body excretes the substances). In essence, 
they help with understanding how herbal and drug compounds interact when taken 
together, shedding light on potential drug effectiveness or toxicity. Equation (4) pres-
ents a one-compartment PK model:

	
dC

dt
k C=− . � (4)

where
C is the concentration of the drug in the compartment.
k  is the elimination rate constant.

5.2.4 PBPK  Models

Physiologically based PK models are advanced tools that combine physiological and 
anatomical information with drug-specific parameters to forecast drug concentra-
tions in various tissues over time. Unlike traditional models, PBPK modeling pro-
vides a more comprehensive and mechanistic understanding of how drugs behave 
within the body by integrating detailed information such as organ volumes, blood 
flow rates, and physiological processes. PBPK models are particularly valuable for 
studying HDIs as they take into account critical factors that influence drug behavior 
such as protein binding, which affects the availability of the drug; metabolic pro-
cesses that determine how quickly a drug breaks down; and interactions with trans-
porters that facilitate or hinder drug movement across cell membranes in different 
organs and tissues. By considering these variables, PBPK modeling allows research-
ers to simulate realistic scenarios of how herbal compounds and pharmaceuticals 
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might interact within the body. PBPK models are a vital resource for enhancing the 
safety and efficacy of combined therapies involving herbal and conventional medica-
tions (Huang, 2012; Vieira and Huang, 2012; Huang et al., 2020). Equation (5) gives 
the basic PBPK model:

	
dC

dt

D

V
k Celim= − .  � (5)

where
D is the dose of the drug.
V  is the volume of distribution.
kelim is the elimination rate constant.

5.2.4.1  Population PK Models
Population PK models are essential tools in pharmacology that aim to explain the 
variability in drug concentrations among individuals within a specific population. 
These models consider how different factors influence drug exposure and response, 
enabling healthcare professionals to accurately predict drug concentrations in 
diverse patient groups. By incorporating variables such as age, gender, body weight, 
genetic factors, and concomitant medications, population accurately models provide 
insights into how these elements can impact drug absorption, distribution, metab-
olism, and elimination. This approach is particularly valuable when assessing the 
effectiveness and safety of treatments across various demographics, ensuring that 
therapeutic strategies are tailored to meet the needs of different patient populations. 
Additionally, these models play a crucial role in identifying subpopulations that 
might be at increased risk of adverse interactions.

By understanding how specific factors contribute to variability in drug concentra-
tions, healthcare providers can make informed decisions about dosing adjustments 
and monitoring strategies. This helps to enhance patient safety, particularly for those 
using herbal supplements alongside conventional medications, thereby minimizing 
the risk of potentially harmful drug interactions. Equation (6) gives a population PK 
model:

	 C eij i
ij= ( )0 .

e
� (6)

where
Cij is the observed drug concentration for individual i  at time j .
0i is the typical parameter value for i.
eij is the random error term.

PK/PD models offer a robust quantitative framework for comprehensively under-
standing the pharmacokinetic and pharmacodynamic properties of both herbal and 
pharmaceutical compounds, as well as their interactions within the body. These 
models play a pivotal role in simulating how drug concentrations fluctuate over time 
and elucidating their corresponding effects on physiological functions. By effec-
tively modeling drug behavior, PK/PD approaches enable researchers and clinicians 
to predict the likelihood and magnitude of HDIs. This predictive capability is crucial 
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for assessing potential risks and benefits associated with concurrent use of herbal 
supplements and conventional medications. Understanding these interactions can 
lead to more informed clinical decisions regarding drug therapies.

Moreover, PK/PD models facilitate the optimization of drug regimens by identify-
ing the best therapeutic strategies tailored to individual patients. By evaluating how 
factors such as dosage and timing influence drug effects, healthcare professionals 
can enhance treatment outcomes and improve patient safety. Ultimately, these mod-
els serve as invaluable tools in the effort to minimize adverse effects and maximize 
therapeutic efficacy, contributing to safer and more effective healthcare practices.

5.2.5 N etwork Analysis

Network analysis is a highly effective method employed in the predictive modeling of 
HDIs to uncover and understand the intricate relationships between herbal compounds, 
pharmaceutical drugs, and biological targets. This approach involves constructing and 
evaluating networks that represent interactions across multiple levels of biological 
organization, such as molecular, cellular, and systemic levels. By doing so, network 
analysis can offer deep insights into the underlying mechanisms of HDIs, helping to 
predict potential interactions between herbal remedies and conventional medications. 
This enables more informed decision-making in both drug development and clinical 
applications, improving patient safety and treatment outcomes. The examples of net-
work analysis techniques used for predictive modeling of HDIs are listed below:

5.2.5.1  Drug–Target Interaction Networks
Drug–target interaction networks illustrate the relationships between drugs and their 
molecular targets, which include receptors, enzymes, or transporters. Investigators 
create these networks by integrating data from diverse sources and analyzing it to 
identify potential HDIs that may occur due to shared biological targets or pathways. 
This approach allows researchers to predict interactions that might not be evident 
through traditional methods, aiding in the understanding of the effects herbal com-
pounds can have when combined with pharmaceutical drugs. Such insights are 
essential for enhancing drug safety and optimizing therapeutic strategies in clinical 
settings (Liu et al., 2021):

	 W
e
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where
Wij is the weight of the edge between drug i  and target j .
Sij  is the similarity score between i  and j .
B  is a parameter controlling the steepness of the sigmoid function.

5.2.5.2  HDI Networks
HDI networks depict the interactions between herbal compounds and pharmaceuti-
cal drugs, focusing on shared targets, metabolic pathways, or similar physiological 
effects. By integrating data on herbal constituents, drug targets, metabolic enzymes, 
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and signaling pathways, these networks provide a comprehensive view of potential 
interactions. They help identify whether herbal and drug therapies might have syner-
gistic effects that enhance their combined efficacy or antagonistic effects that reduce 
the therapeutic outcome. This predictive approach is crucial for ensuring safe and 
effective use of herbal supplements alongside conventional medications, minimiz-
ing the risk of adverse interactions and improving personalized treatment strategies 
(Borse et al., 2019; Das et al., 2023):
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where
Wij is the weight of the edge between herbal compound i  and target j .
Sij  is the similarity score between i  and j .
B  is a parameter controlling the steepness of the sigmoid function.

5.2.5.3  Pathway Analysis
Pathway analysis is a crucial tool used to identify and study biological pathways 
affected by herbal compounds and pharmaceutical drugs. This approach involves 
mapping the molecular targets of both herbs and drugs onto pathway databases, 
which helps researchers explore how these compounds interact within complex bio-
logical systems. By identifying key pathways that are impacted, pathway analysis 
can reveal the mechanisms behind HDIs and predict their effects on cellular pro-
cesses such as gene expression, metabolic activities, and signaling cascades.

Moreover, pathway analysis can uncover potential implications for disease path-
ways, providing insight into how HDIs might influence disease progression or ther-
apeutic outcomes. Through this detailed analysis, researchers can anticipate both 
beneficial and harmful interactions, contributing to safer and more effective use of 
herbal and drug therapies in clinical settings. This predictive approach is valuable 
for enhancing personalized treatment strategies and ensuring patient safety:

	 p
n

n n
overlap

overlap background

=
+

� (9)

where
p is the enrichment p value.
noverlap is the number of genes shared between the input list (herbal targets, 

drug targets) and the pathway.
nbackground is the total number of genes in the pathway.

Network analysis offers a systems-level understanding of HDIs by integrating data 
from diverse sources and identifying critical interactions and pathways involved in 
how herbal compounds influence drug responses. By examining the structure and 
dynamics of these interaction networks, researchers can predict the likelihood and 
potential severity of HDIs. This approach not only helps in anticipating adverse 
interactions but also plays a significant role in optimizing drug therapy. It enables the 
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adjustment of dosages or drug combinations to minimize risks and enhance thera-
peutic outcomes. Furthermore, network analysis can inform personalized medicine 
approaches by tailoring treatments to individual patients based on their unique inter-
action profiles, ensuring safer and more effective healthcare strategies. This compre-
hensive view is crucial for advancing the understanding of HDIs in clinical settings. 
Figure 5.1 gives a visual overview of these mathematical techniques for predictive 
modeling of HDIs.

5.3  PREDICTIVE MODELING OF HDIS

5.3.1  Data Preprocessing and Feature Selection

Data preprocessing is critical in HDI predictive modeling to ensure the quality and 
relevance of the data. This involves cleaning the dataset by handling missing val-
ues, removing duplicates, and addressing outliers (Kumar et al., 2024). Additionally, 
feature selection is essential for identifying the most informative features related to 
HDIs while reducing dimensionality. Techniques such as univariate feature selec-
tion, recursive feature elimination, and feature importance ranking are commonly 

FIGURE 5.1  Mathematical techniques for predictive modeling of herbal–drug interactions.
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employed to select relevant features from heterogeneous datasets containing infor-
mation on herbal compounds, drugs, targets, pathways, and interactions (Guyon and 
Elisseeff, 2003).

5.3.2 M odel Development and Validation

Model development involves building predictive models using various algorithms 
and techniques such as machine learning, statistical modeling, and ensemble meth-
ods (Singhal et al., 2022). These models aim to predict the likelihood and outcomes 
of interactions between herbal compounds and drugs. Validation techniques are then 
employed to assess the performance of the developed models and ensure their accu-
racy and generalizability. Techniques such as cross-validation, holdout validation, 
and external validation are utilized to evaluate model performance and prevent over-
fitting (Hastie et al., 2005).

5.3.3 I ntegrating Heterogeneous Data Sources

Integrating heterogeneous data sources involves combining data from multiple 
sources including molecular databases, literature, and experimental studies to create 
a unified dataset for analysis (Boadh et al., 2022). Techniques such as data fusion, 
ontology-based integration, and semantic web technologies are employed to har-
monize and integrate heterogeneous data sources, enabling a holistic analysis of 
HDIs and facilitating the identification of relevant features and predictive patterns 
(Sokolov et al., 2013).

5.3.4 M odel Interpretability and Explainability

Interpretability and explainability are essential aspects of HDI predictive modeling 
for understand the mechanisms underlying HDIs and provide transparent explana-
tions for model predictions. Techniques such as feature importance analysis, Shapley 
additive explanations, local interpretable model-agnostic explanations, and model 
visualization are utilized to interpret and explain the factors influencing HDIs. By 
gaining insights into the underlying mechanisms, stakeholders can make informed 
decisions regarding herbal and drug therapy optimization and personalized medi-
cine approaches (Lundberg and Lee, 2017). These methodologies (Figure 5.2) play 
crucial roles in the development of accurate, reliable, and interpretable predictive 
models for HDIs. By employing these methodologies systematically, researchers can 
advance our understanding of HDIs and facilitate the development of safe and effec-
tive herbal and drug therapies.

5.4  HDI PREDICTIVE MODELING APPLICATIONS

Predictive modeling of HDIs holds significant promise across various applications, 
providing valuable insights and support in different domains of healthcare. Next we 
discuss some of the key applications of predictive modeling.
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5.4.1 C linical Decision Support Systems

Predictive models play a vital role in clinical decision support systems by helping 
healthcare professionals make informed decisions regarding patient care. These 
advanced systems analyze a wide range of patient data, such as medical history, 
demographics, medication profiles, and other relevant information, to forecast the 
likelihood of potential HDIs and provide real-time alerts to clinicians, significantly 
enhancing patient safety. They not only help in preventing adverse events but also 
contribute to optimizing treatment plans, ensuring more personalized and effective 
care. Moreover, by identifying potential risks early, healthcare providers can tailor 
therapies to meet patient needs, improving overall outcomes (Nong et  al., 2022). 
As technology evolves, the integration of predictive models into clinical settings 
will continue to strengthen patient care, reduce risks, and improve the efficiency of 
healthcare delivery.

FIGURE 5.2  Methodologies for predictive modeling of herbal–drug interactions.
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5.4.2  Drug Development and Repurposing

Predictive modeling is an essential tool in the field of drug discovery and devel-
opment as it helps identify potential interactions between herbal compounds and 
conventional drugs. By leveraging computational models, researchers can analyze 
molecular structures, pharmacological properties, and biological pathways to predict 
the likelihood and possible outcomes of HDIs. This data provides valuable insights 
that enable scientists to prioritize promising candidate compounds, design safer drug 
combinations, and even repurpose existing drugs for new therapeutic purposes. The 
use of these models significantly speeds up the drug development process, reducing 
the time and resources required to bring effective treatments to market. Additionally, 
predictive modeling helps expand treatment options, ensuring more personalized 
and safer therapies for patients by minimizing adverse effects. As a result, it plays a 
key role in advancing pharmaceutical research and improving healthcare outcomes 
(Abbas et al., 2021).

5.4.3 P ersonalized Medicine and Precision Dosing

Predictive models play a pivotal role in enabling personalized medicine by analyzing 
individual patient characteristics, such as genetic profiles, treatment histories, and 
other relevant factors, to predict personalized responses to both herbal and drug ther-
apies. These models take into account key variables like metabolism rates, genetic 
polymorphisms, and existing comorbidities to allow for designing treatment regi-
mens that are tailored to each patient’s specific needs. By doing so, predictive models 
enhance the efficacy of treatments, ensuring that therapies are both effective and 
safe. This personalized approach also minimizes the likelihood of adverse effects, 
as dosages and drug selections are optimized for each individual. Furthermore, 
by aligning treatments with patients’ unique biological factors, predictive models 
improve patient adherence to medication plans, as treatments are more likely to be 
well tolerated and effective. Overall, these models contribute to the development 
of more precise and individualized therapeutic strategies, improving outcomes in 
patient care (Fröhlich et al., 2018).

5.4.4 P harmacovigilance and Adverse Event Monitoring

Predictive modeling plays a significant role in enhancing pharmacovigilance by uti-
lizing real-world data sources like healthcare databases, electronic health records, 
and adverse event reporting systems. These models are designed to detect patterns, 
trends, and signals that can indicate potential adverse reactions or drug interactions 
that might otherwise go unnoticed. By analyzing vast amounts of real-time data, 
predictive models can identify safety concerns early, allowing for timely interven-
tions to mitigate risks. This approach not only improves post-market surveillance 
but also ensures the continued safety and efficacy of both herbal and conventional 
drug therapies. As a result, predictive modeling measures help regulatory bodies and 
healthcare providers manage safety concerns more proactively. Through its ability 
to process and interpret complex data, predictive modeling is an invaluable tool in 
minimizing risks and improving the overall quality of patient care (Ventola, 2018).
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5.5  CHALLENGES AND LIMITATIONS

Predictive modeling of HDIs encounters significant challenges and limitations that 
hinder its effective application in healthcare settings. One of the primary hurdles is 
data availability and quality, as information regarding herbal medicine usage and 
associated interaction data is often scarce and heterogeneous. This variability can 
lead to issues related to reliability and accuracy, making it difficult to draw meaning-
ful conclusions (Kumar et al., 2023). Additionally, validating predictive models for 
HDIs proves challenging due to the complex nature of these interactions. There is a 
critical need for diverse validation data to assess the generalizability of these models 
across different populations (Brantley et al., 2014).

Translating predictive models from research into clinical practice also poses dif-
ficulties, particularly in integrating these models into existing healthcare workflows. 
Addressing technical, organizational, and cultural barriers is essential for success-
ful implementation (Sandhu et al., 2020). Ethical considerations regarding patient 
privacy, informed consent, and fairness, along with adherence to regulatory compli-
ance, further complicate the development and deployment of predictive models for 
HDIs (Cohen et al., 2014). Overcoming these challenges necessitates collaboration 
among various stakeholders, including researchers, clinicians, and regulatory bod-
ies, to enhance data collection, validation methods, clinical implementation strate-
gies, and ethical frameworks. By addressing these issues, predictive modeling of 
HDIs can significantly improve patient care, drug safety, and the overall effective-
ness of personalized medicine initiatives.

5.6  FUTURE DIRECTIONS

Future directions in research on predictive modeling of HDIs encompass advancing 
the field and improving its applicability in healthcare. First, standardization of datasets 
and reporting guidelines is crucial for ensuring consistency and comparability across 
studies, facilitating data sharing, meta-analyses, and reproducibility. Additionally, the 
integration of multi-omics data, including genomics, transcriptomics, proteomics, and 
metabolomics, holds promise for holistic modeling of HDIs, providing insights into 
underlying molecular mechanisms and personalized treatment strategies. Decision 
support systems in healthcare settings are imperative for translating predictive models 
into clinical practice, enhancing healthcare providers’ ability to identify and man-
age HDIs effectively. Lastly, collaborative efforts between academia, industry, and 
regulatory agencies are essential for promoting interdisciplinary research, accelerat-
ing innovation, and establishing regulatory standards and guidelines for developing 
and deployment of predictive models in HDIs. By pursuing these future directions, 
researchers can advance the field of predictive modeling in HDIs, ultimately improv-
ing patient care, drug safety, and personalized medicine approaches.

5.7  CONCLUSION

In conclusion, with this chapter, we have explored various predictive models employed 
in the study of herbal–drug interactions, highlighting their critical significance in 
advancing our understanding and management of medication safety. Throughout the 
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review, we discussed methodologies including machine learning algorithms, phar-
macokinetic/pharmacodynamic models, network analysis, and systems biology, all 
of which contribute to the predictive modeling of HDIs. These models have demon-
strated efficacy in identifying potential interactions, optimizing treatment regimens, 
and enhancing medication safety across diverse healthcare settings. By effectively 
leveraging these models, healthcare providers can make informed decisions regard-
ing the safe use of herbal and drug therapies, ultimately leading to improved patient 
outcomes and a more personalized approach to healthcare. Looking ahead, the 
continued development and refinement of predictive models present a promising 
avenue for further enhancing medication safety and advancing personalized medi-
cine approaches, particularly in the complex and evolving landscape of herbal–drug 
interactions. This ongoing research will be vital for integrating safe herbal remedies 
into clinical practice.
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6.1  INTRODUCTION

Breast cancer is one of the most prevalent causes of death in women [1]. Yoon and 
Kim in [2] describe the primary goals of using AI to assist image interpretation 
as follows: 1) Computer-aided detection (CADe), also known as automated lesion 
detection, which focuses on identifying worrisome anomalies in an image; 2) com-
puter-aided diagnosis (CADx), the process of describing anomalies found by either 
the radiologist or the computer. The interpreting radiologist decides the clinical sig-
nificance of the discovered aberration and whether it requires additional study based 
on the CADe/CADx analysis. Kim et al. [3] report that CAD, which functions as an 
automated second reader by flagging potentially problematic regions for radiologists 
to analyze, increases the sensitivity of mammography.

Although image processing using deep learning (DL) is comparatively recent, 
extensive research work has been already published [4–9]. Earlier researchers 
reported on using standard machine learning techniques like decision trees and SVM 
and boosting algorithms like AdaBoost and XGBoost [10, 11]. The later research dis-
cussed is extensively based on demographic, genetic, and other features, with some 
studies referring to mammographs. However, the overall use of DL has been limited 
due to high recall rates and low performance metrics. Researchers are making con-
stant efforts to improve performance metrics, and some have tested vision transform-
ers, but these are not yet on par with DL methodologies [12].

Due to computational and hardware restrictions, running DL models requires 
multiple GPUs and a significant amount of RAM, which many people cannot afford; 
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with the ability to change the top and final layers, we can use models that have 
already been trained on large image datasets. Sets include ResNet50 [13], a resid-
ual network with around 150 layers that was trained by Microsoft; VGG16 [14] and 
VGG19 [15], which were also taught by Microsoft; and AlexNet. The final layer can 
be altered to accommodate the necessary number of classes, trained in real-time, 
or used as is with weights acquired from extensively large datasets like ImageNet.

In Section 2 of the chapter, we cover the literature review; in Sections 3 and 4, we 
discuss our study methodology and the results, respectively. We give conclusions in 
Section 5 and future perspectives in Section 6.

6.2  LITERATURE REVIEW

This section of the chapter gives a detailed study on various techniques proposed 
by researchers for early diagnosis of possible patients of AD with help of various 
medical tools.

6.2.1 C ommon Imaging Views

There are two primary views taken for mammographic imaging, craniocaudal and 
mediolateral oblique. In the craniocaudal view, the images are taken from the cranial 
to the caudal end of the relevant breast, generally from the top perspective; Figure 6.1a 
shows the craniocaudal perspective. The mediolateral oblique view is taken from the 

FIGURE 6.1 A)  Craniocaudal view.
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center of the chest outward and is the most important projection as it allows for depict-
ing most of the breast tissue; Figure 6.1b shows the mediolateral oblique view.

6.2.2  Density

BI-RADS, the Breast Imaging Reporting and Data System, categorizes mammo-
gram findings according to breast density as follows:

•	 BI-RADS 0: Inadequate need for mammography and/or further imaging exam-
ination, recovering prior images that were inaccessible at the time of reading

•	 BI-RADS 1: No masses, negative symmetry, architectural deformation, or 
aberrant calcifications

•	 BI-RADS 2: Nearly totally adipose, benign, and cancer-free
•	 BI-RADS 3: Dispersed patches of fibro glandular density; short-term sur-

veillance is recommended; 2% chance of malignancy
•	 BI-RADS 4: Cancer is suspected, heterogeneous density. Mammography 

and ultrasonography have a 2%–94% chance of recognizing such cases. 
BI-RADS 4 is subdivided into
•	 BI-RADS 4A: 2%–9% malignancy risk is low
•	 BI-RADS 4B: High cancer suspicion (10%–49%)
•	 BI-RADS 4C: Extremely high cancer risk (50%–94%); consider biopsy

FIGURE 6.1 B)  Mediolateral oblique view.
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•	 BI-RADS 5: >95% probability of malignancy, very dense, strongly sugges-
tive of cancer

•	 BI-RADS 6: Malignancy confirmed

6.3 � ADVANTAGES AND DISADVANTAGES 
OF USING MAMMOGRAPHS

Mammography is a standard because of its easy access and low cost, and the use of 
low-powered X-rays limits radiation exposure, although there is still susceptibility. 
However, false-positive recalls result in extra imaging tests or biopsies, which raises 
medical costs and puts the patient’s mental state under stress, and false negatives 
delay detection [16, 18].

6.4  STUDY COMPARISON

Table 6.1 compares the latest models that are being used to detect cancer in mam-
mographic images.

6.5  METHODOLOGY

6.5.1  Data Acquisition

The Digital Database for Screening Mammography (DDSM) is the most widely 
used of all the available mammographic datasets with 2620 instances; newer ver-
sions include premade NumPy array and tensors of labels and images respectively. 
Moreira et al. [16] describe it as follows:

For each of the 2,620 instances in the Digital Database for Screening Mammography 
(DDSM), a substantial quantity of information was already present. However, some 

TABLE 6.1
Current AI Techniques for Detecting Breast Cancer

References
Dataset
Used AI Category AUC Sensitivity Specificity

[11] CBIS-DDSM Residual CNN 0.903 75.6% 90.2%

[17] InBreast Resnet50 and VGG19 0.95* 86.1%* 86%*

[19] MCCS OPERAs 0.72 – –

[20] Undisclosed DL 0.7 – –

[21] DDSM, OPTIMAM-DB 
and 5 sites

Ensemble learning model 0.765 73.3% 83.1%

[22] CBIS-DDSM Transfer Learning (VGG, 
Resnet, Xception)

0.844* - -

[22] DSM AlexNet 0.98* 100%* 97.37%*

*	-best of all given and proposed models
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information was scarce, particularly the ROI annotations, and some was challenging 
to access. By modernizing the ROI segmentations and collecting and reformatting 
the metadata into a more user-friendly style, CBIS-DDSM (Curated Breast Imaging 
Subset of DDSM) was able to address these problems.

The DDSM labels classify images into benign mass, benign calcification, malig-
nant mass, or malignant calcification. Calcifications are deposits of calcium and 
appear as white spots on mammographic images; they can be micro or macro. 
Microcalcifications are usually very fine and clustered and are considered to be early 
signs of breast cancer, whereas macrocalcifications are larger and coarser and are 
usually noncancerous and considered to be signs of other conditions such as aging 
or cysts. Hence, suspicious microcalcifications are susceptible to biopsy. A mass is a 
three-dimensional area of tissue that can be benign or malignant; a malignant mass is 
usually of irregular shape, whereas benign masses are usually round or oval. Breast 
density, an important feature in malignancy (denser being malignant), is assessed via 
other imaging methods like ultrasound, MRI, or biopsy.

6.5.2  Data Preprocessing and Feature Selection

The following subsection describes various data pre-processing techniques used in 
the process.

1)	 Data Augmentation
		  By creating additional data points from current data, a method known 

as data augmentation can artificially increase the quantity of data avail-
able. Huang et  al. in [1] tells readers to use multiple data augmentation 
techniques including rotation at an interval of 30 degrees, flips etc. the 
defined techniques use InBreast dataset and increase the 106 images to 
7632 images.

2)	 Normalization
		  Huang et  al. [1] uses CLAHE or Contrast Limited Adaptive Histogram 

Equalization which contrast is amplified to reduce noise amplification 
problem. Kim et al. in [3] uses pixel normalization to adjust the pixels in 
the range of +1 to −1 in both contrast and brightness terms.

3)	 Splits
		  In general, it was visible that a standard split of 10% to 30% max of total 

data was reserved for testing purpose [23, 24]. were the only ones to use 
external validation, while others reserved 10–20% of the training data for 
the validation purpose to avoid overfitting in the overall model.

4)	 Remapping/Relabeling
		  The labels provided by the author were not compatible and hence new labels 

were produced by remapping the existing labels.
5)	Conversion of Data type
		  The data of images originally in NumPy arrays is in the form of 16-bits and 

needs to be rescaled to float value between 0 and 1, hence we rescale the 
images the process can also be termed as normalizing the image data
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6.5.1.3  Techniques Used
An example of a deep learning system, convolutional neural networks (CNNs) excel 
at processing and classifying images. This structure’s layers include convolutional, 
pooling, and fully connected layers.

The convolutional layers of a CNN are the most essential component, where fil-
ters are used to extract data from the input picture, such as edges, textures, and 
forms. The output of the convolutional layers is supplied after the feature maps have 
been down sampled, maintaining just the most essential information while lowering 
the spatial dimensions. The pooling layers’ output is then applied to one or more 
fully connected layers to forecast or categorize the picture.

The model is built using premade TensorFlow libraries and Keras; the final model 
consists of four 2D CNN stacked along with max-pooling layers and a dropout layer. 
The kernel size is fixed, and the filter size is gradually increased from 32 to 128. The 
total trainable parameters were 990,049. Colab by Google was used to host the code, 
and the standard free-tier GPU was used. Two optimizers, Adam and RMSprop, 
were compared consecutively with early stopping. A validation set was constantly 
tested to observe the loss, and stopping condition was set to 80. Plots were made to 
check for overfitting and accuracy growth.

6.6  RESULTS AND ANALYSIS

The final model showed sensitivity of 0.87, specificity of 0.84, accuracy of 0.81, and 
validation loss of 0.33. The initial models gave promising results, but later evaluation 
clearly indicated overfitting (Table 6.2).

Another initial model was more deeply trained on the INbreast dataset and showed 
promising accuracy, but the confusion matrix indicated significant class imbalance, 
and the model had to be rejected. To address overfitting, we gradually increased the 

TABLE 6.2
Comparison of Preliminary and Final Models

No. of 
Epochs

Optimizers Number of 
CNN Layers

Optimum 
Validation 

Loss

Optimum 
Testing 

Accuracy

Specificity Sensitivity

100 RMSProp 3 0.44 0.75 0.80 0.72

100 Adam 3 0.47 0.77 0.72 0.82

100 RMSProp 3* 0.48 0.74 0.71 0.77

100 Adam 3* 0.48 0.74 0.68 0.80

500** RMSProp 4* 0.33 0.81 0.84 0.87

500 Adam 4* 0.53 0.75 0.66 0.82

  *  Includes models with dropout layers
**  Final model



106� Handbook of Deep Learning Models for Healthcare Data Processing

number of epochs from 100 to 500 and then analyzed using the plot of training accu-
racy, validation accuracy, training loss, and validation loss.

The graphs indicated that with 100 epochs, the problem was not highly preva-
lent. However, to achieve better performance metrics, optimization was necessary. 
Increasing the number of epochs, along with introducing systematic and appropri-
ate dropout layers, improved performance. The final analysis showed tapering of 
both validation and training loss, approaching the desired level at the final number 
of epochs. The accuracy was similar between the validation and training datasets, 
indicating that the model performed well with more epochs. It successfully avoided 
overfitting or underfitting and achieved admirable accuracy. More than 500 epochs 
showed no additional improvement and started to show signs of overfitting after a 
certain point.

6.7  CONCLUSIONS AND FUTURE SCOPE

Classifying suspected lesions for ductal carcinoma as benign or malignant is a dif-
ficult and computationally expensive task, making widespread deployment difficult 
owing to proprietary rights as well. The ability to classify masses and calcifica-
tions in less time and using less computation reduces stress on medical systems and 
reduces resource consumption.

Radiologists and oncologists can use this methodology to validate mammo-
graphic results without requiring a second consultation, which also reduces strain 
on medical resources. Multiple modalities exist in which doctors can collaborate 
with computer-aided systems in order to achieve better validation for both doctors 
and system [2].

The proposed model serves as the second layer in a three-layer framework, sepa-
rating calcifications and muscle masses in mammographic breast images. It then 
passes the processed data to the next layer, which classifies the region of interest 
(ROI) as benign or malignant. The model uses a number of parameters and requires 
detailed preprocessing to yield promising results. The first layer of the larger model 
is reserved for ROI extraction, and the second differentiates the calcifications and 
masses; the third layer classifies the ROI as benign or malignant classes (cancerous 
or noncancerous).

In this chapter, we discuss various models designed using deep learning, specifi-
cally convolutional neural networks, along with different modalities like optimizers 
and epochs. We explored these aspects in detail to obtain the best possible combina-
tion, which can be integrated as a layer in the final model. The table in the literature 
review presents an analysis of end-to-end models used to detect cancers in mammo-
graphic images. Although the model is incomplete, it has shown promising results as 
an intermediate component within a committee model stack.

The committee model also aims to develop an application as an abstract layer for 
use by physicians. Databases can be thereby be enhanced and validated in real time 
with the help of edge computing techniques. The proposed model relies on tradi-
tional image processing and computer vision methodologies along with traditional 
optimization techniques. However, nature-inspired algorithms like swarm optimiza-
tion have yet to be fully explored in this context.
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7 Artificial Intelligence-
Based Automated 
Detection of 
Rheumatoid Arthritis

R.K. Ahalya, Riya Singh, and U. Snekhalatha

7.1  INTRODUCTION

Rheumatoid Arthritis (RA) is an advancing inflammatory disease that impacts joints 
in the hands, wrists, and knees, with the metacarpophalangeal (MCP) and proximal 
interphalangeal (PIP) joints being the most commonly affected in the fingers. The 
worldwide prevalence of RA was 460 per one lakh population, with a 95% prediction 
interval ranging from 0.06% to 1.27% [1]. The prevalence in RA in India ranges from 
0.28% to 0.7% of the overall population [2].

RA is characterized by structural damage such as soft tissue inflammation, joint 
space narrowing (JSN), bone erosion, subluxations, and juxta-articular osteoporosis. 
Inflammation in the synovial tissue caused by RA damages cartilage, subchondral 
bone, and soft tissues of the pretentious joints. Inflammation of the subchondral bone 
leads to inflammatory cysts and subsequent erosion.

The 2010 criteria for diagnosing RA, established by the American College 
of Rheumatology (ACR) in collaboration with the European League Against 
Rheumatism (EULAR) [3], are as follows: i. The patient should have at least one 
joint swelling, and joint swelling should not be due to any other diseases; ii. the score 
for joint involvement should range between 0 and 5; iii. the serology score should 
range from 0 to 3; iv. acute-phase reactant scores should range from 0 to 1; v. the 
duration (> six weeks) of symptom scores range from 0 to 1.

The conventional method for evaluating RA is radiographs, as proposed by 
Steinbrocker [4]. The widely accepted method for clinical studies of RA is the Sharp and 
Larsen scoring method in radiographs [5], but other diagnostic methods used to evaluate 
RA include ultrasound and MRI, both of which help to detect RA and early-stage bone 
erosions. Notably, The drawbacks of using MRI imaging are that it is very expensive and 
cannot be used on patients with implanted devices. Recently, musculoskeletal ultrasound 
is the latest diagnostic technology for detecting RA structural damage such as bone ero-
sion, cartilage loss, JSN and JSW, inflammation, synovial thickening, and edema.

Conventional radiography, as noted, was the gold standard for diagnosing RA [6]. 
The manual methods used to evaluate structural damage in RA are the visual scoring 
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of bone erosion, JSW, and JSN. These subtle changes in joints are difficult to identify 
manually by evaluating X-rays. Therefore, researchers developed automated meth-
ods for detecting RA using various AI methods. AI is an indispensable technology 
that uses computer-aided algorithms to dissect complex clinical data. It plays an 
essential role in imaging diagnosis and is gaining increasing attention for establish-
ing and fine-tuning models’ performance across a wide range of medical data [7].

RA is a chronic autoimmune disease affecting approximately 0.5% to 1% of the 
global population. The early and accurate diagnosis of RA is critical for prevent-
ing long-term joint damage, improving patient outcomes, and reducing the societal 
burden of the disease. Traditional diagnostic methods such as radiographs, ultra-
sound, and MRI are widely used to assess joint damage but often rely on subjective 
evaluations, making it difficult to detect subtle changes in early RA. The advent of 
AI in healthcare has introduced transformative technologies to automate diagnostic 
processes and improve diagnostic accuracy. Machine learning (ML) is a subset of 
AI that allows the computer to learn complex data without explicit programming. 
A branch of ML called deep learning (DL) utilizes numerous layers of artificial neu-
ral networks to extract high-level features from datasets [8]. Scientists in radiology 
have effectively used AI to detect abnormalities that are difficult to visualize with 
the naked eye. Radiology is transitioning from a subjective perceptual skill to a more 
empirical reality. Figure 7.1 illustrates the relationships between AI, ML, and DL.

FIGURE 7.1  The relationships between AI, ML, and DL.
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This chapter provides a comprehensive review of evaluating RA with insights 
into various ML and DL image segmentation, feature extraction, and classifica-
tion techniques. Earlier, handcrafted features were used in ML to detect RA, but 
automated feature extraction has become preferred due to the tedious and time-con-
suming nature of manual methods. Recently, computer-aided diagnosis was used 
to assess RA based on segmentation and ML classifiers. DL approaches such as 
convolutional neural networks (CNNs) based on pretrained models were employed 
for automated feature extraction and categorization of RA and normal images ahead 
of ML algorithms. The working comparison of ML and DL for RA is demonstrated 
in Figure 7.2.

Our aims with this chapter are to summarize the various segmentation algorithms 
and feature extraction techniques for detecting RA in hand radiographs and ultra-
sound images using ML and DL methods and to explore the various pretrained CNN 
architectures for the automatic diagnosis of RA.

7.2  MATERIALS AND METHODS

7.2.1 I mage Segmentation

7.2.1.1  Graph Convolution Network
Graph convolution network (GCN) is a recently image segmentation based on semi-
supervised learning; it is a form of CNN that directly works on graphs, and its pri-
mary function is to solve the problems of classifying nodes in a graph; for each node, 

FIGURE 7.2  Comparison of machine learning and deep learning in RA image processing.
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feature information is taken from its neighbors and the feature itself. Then the aver-
age function is applied for all the nodes, and these values are fed to a neural network 
[9, 10]. A typical example of GCN is illustrated in Figure 7.3.

The authors of [11–13] used a curve graph GCN to segment RA patients’ second, 
third, and fourth metacarpal joints. By learning a boundary generation process, the 
authors used a new GCN-based contour transformer network (CTN) to segment the 
region of interest (ROI). The CTN took one labeled image from the input images and 
fitted a contour in a required object boundary. Thus, the segmentation based on GCN 
was performed on the unlabeled image. In their study, the authors segmented only the 
metacarpal bones; however, RA also affects the PIP joints. Therefore, the performance 
of their developed model would have been enhanced if they had included both joints.

7.2.1.2  Region-based Active Contour Segmentation
Region-based models exhibit reduced sensitivity to the positioning of initial contours. 
These approaches utilize the overall information of the image rather than focusing 
on its local gradient. This allows for optimizing global image segmentation through 
minimization. In [14], the authors extracted the extensor tendon of the second MCP 
joint from ultrasound images. The active contour line in the images comprised a series 
of N-dimensional points distributed along the image. They reconstructed the complete 
tendon line by applying an interpolation function to these points. RA predominantly 
affects the PIP and MCP joints; however, the authors only studied the extensor tendon 
of the MCP joint. Therefore, quantifying RA using only the segmented extensor tendon 
presents a significant challenge in differentiating between RA and normal subjects.

7.2.1.3  Multiscale Gradient Vector Flow Snakes Algorithm
The snake algorithm is an active contour method used to represent the boundaries of 
single objects; it cannot be used to describe the boundaries of multiple objects [15]. 
Chenyang and Prince et al. demonstrated a modified snake algorithm called gradient 

FIGURE 7.3  A typical example of the GCN method.
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vector flow (GVF) [16]. In the GVF approach, if there are multiple objects in an 
image and the snake is partially positioned between the two objects, then GVF will 
pull the snake to encompass both edges of the objects. The gradients are affected by 
noise by pulling the snake to cover the boundary.

However, GVF has the drawback of being dependent on edge maps. To overcome 
this disadvantage, multiscale gradient vector flow (MSGVF) was introduced, and the 
edge maps were amended using different scale-based approaches, which intruded on 
the gradient to deal with the noise more effectively. The authors of [17] performed 
segmentation on hand radiographs to obtain the phalanges from the finger joints. 
The phalanges region was initially segmented using contour tracing and histograms. 
These segmented phalange regions contained noise and residual soft tissues; thus, the 
final segmentation was executed using the MSGVF snake algorithm to improve the 
segmentation process. Their approach involved setting sampling points around the 
already segmented region, smoothing them, and then computing the MSGVF from 
the smoothed image. Then they took the new sampling points from the image using 
Snake’s algorithm. The control points were determined utilizing the new sampling 
points, and the curves between the points were taken by insertion employing the B 
spline method, preceded by segmentation using MSGVF.

7.2.1.4  Gaussian Scale Space
Scale space represents an image as a family of smooth images that can be used to 
manage image structures at different scales. The size of the smoothing kernel used 
to accommodate fine-scale structures defines the scale-space representation. One 
of the main types of scale space is the linear (Gaussian) scale space, a background 
region-based segmentation method. Yang et al. used Gaussian scale space to seg-
ment the synovium thickening, bone erosions, and MCP joints from hands in ultra-
sound images [18]. The synovium thickening and bone erosion regions appear dark, 
and the MCP joints look bright in an ultrasound image; segmenting dark and bright 
regions using the conventional thresholding method fails to produce accurate results. 
Hence, Gaussian scale space better segmented the MCP joints from the hand ultra-
sound images. The authors took synovial thickening and bone erosion as ROIs that 
were converted into Gaussian space.

7.2.1.5  U-Net Architecture
One of the recently employed DL architectures for biomedical image segmentation 
is the U-Net model. This architecture is widely adopted in biomedical imaging and 
consists of a contracting pathway (left) and an expansive pathway (right) [19]. The 
contracting pathway includes convolutional layers with a kernel size of 3 × 3, each 
followed by a rectified linear unit (ReLU) activation function and a max pooling layer 
with a filter size of 2 × 2 and a stride of 2. The expansive pathway consists of a 2 × 2 
convolutional layer and two 3 × 3 convolutional layers, each followed by a ReLU. The 
final layer is a 1 × 1 convolution that translates the features into the relevant classes.

In [20], the authors applied the U-Net architecture to eliminate background tis-
sues in hand radiographs, selecting 296 hand masks for background removal. They 
trained the U-Net model using an Adam optimizer with a learning rate of 0.0001, 
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a batch size of 16, and 200 epochs. Authors of another study utilized the U-Net 
architecture to segment the joint capsule of the MCP joint in ultrasound images of 
the hand [21]. A challenge with this model is the requirement to generate a mask for 
each corresponding input image, which can be cumbersome when creating masks for 
real-time acquired images.

7.2.2 F eature Extraction

7.2.2.1  Gray Level Co-occurrence Matrix
Gray level co-occurrence matrix (GLCM) is a texture-based technique of feature 
extraction. It represents the spatial relationship of pixels between a reference and 
a neighboring pixel. GLCM determines how often different combinations of gray 
levels co-occur in an image and extracts the characteristics from the matrix. Yang 
et al. extracted the features from the MCP finger joints using GLCM. In their study, 
for each ROI, they took a one-pixel range and four directions, 0°, 45°, 90°, and 135° 
[18]. They obtained each ROI with four-directional GLCM and extracted twenty-
two features for each GLCM. However, hand-crafted GLCM features are tedious to 
extract from each image.

7.2.2.2  Local Binary Pattern
Local binary pattern (LBP) is a textural feature extraction approach that labels pixels in 
an image by thresholding neighboring pixels and treating the result as a binary number 
[22]. LBP considers the pixel value (central pixel) and its eight neighbors. Subramonia 
et al. demonstrated LBP-based feature extraction for detecting RA [23]. The authors 
made two databases with the extracted features using LBP. They resized the input image 
and manually cropped ROIs of size 200 × 200. The histogram-based LBP features were 
extracted from the ROIs and stored in the databases. Database 1 was made using normal 
and RA radiographs. Database 2 was made using medium and severe images of RA.

7.2.2.3  Histogram of Oriented Gradients
The histogram of oriented gradients (HoG) is typically employed to capture the 
structure or shape of an object within an input image [24]. It also offers edge infor-
mation by analyzing the gradients and orientations at the image boundaries. HoG 
constructs a histogram based on these gradients and orientations of pixel values. The 
gradients represent minor variations in both the x and y directions. Morita et al. uti-
lized HoG to identify the MCP, PIP, and distal interphalangeal (DIP) joints in hand 
radiographs [25]. The authors extracted the approximate shapes of the finger joints 
using the HoG and subsequently input these features into an RA classifier.

7.2.3 ML  Techniques

7.2.3.1  Support Vector Machine
Support vector machine (SVM) is a form of supervised learning that trains 
the machine using labeled data [26]. SVM aims to find a hyperplane that 
best divides characteristics into different classes; it generates the hyperplane 
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iteratively to minimize the error. The margin is the separation between the vec-
tors and the hyperplane, and support vector points are information points near 
the hyperplane.

Morita et al. classified RA and normal subjects in hand radiographs using a two-
class SVM classifier [25]. The authors obtained the image patches segmented from 
100 × 100 pixel hand radiograph and fed them to the two-class SVM to diagnose 
finger joints from hand radiographs in which the positive class represented subjects 
affected due to RA and the negative class represented normal subjects. The posi-
tive class used twenty-eight image patches for each subject, and the middle points 
of finger joints were extracted manually. The negative class consisted of 140 image 
patches segmented from the hand radiographs. In both positive and negative classes, 
they estimated the HoG features of 140 × 140 pixel image patches. Then they trained 
the two-class model using HoG of positive and negative classes. The output from 
the SVM classifier ranges from −1 to 1, and output one was determined as finger 
joint. Thus, the classification of the affected finger joint and normal finger joint was 
evaluated. Yang et al. used SVM to classify hand ultrasound images. The training set 
consisted of 60% of the dataset, and the remaining 40% was the testing set. Based 
on their accuracy and speed, the approach used two forms of SVM: one-versus-rest 
and one-versus-one [18].

7.2.3.2  Decision Trees
Supervised learning encompasses decision trees, utilized for both classification 
and regression tasks [27]. Classification trees are applied when the feature values 
are discrete, while regression trees are appropriate for continuous target values. 
Decision trees consist of two types of nodes: decision and leaf. Classes in a given 
dataset are predicted by evaluating the values at the root node. The attribute selec-
tion measure is used to determine the most suitable attribute for both the root node 
and its subnodes.

When segmentation occurs in the dataset based on a specific attribute, it results 
in changes in entropy. Information gain measures these changes in entropy. The 
value of information gain influences the splitting of nodes, thereby guiding the 
construction of the decision tree. The formula for calculating information gain is 
as follows:

	 Information Gain = E(S) − [Weighted Average * E (each feature)]� (7.1)

where E is entropy, which measures impurity in each attribute and specifies irregu-
larities in data.

The Gini index (Equation 7.2) serves as a metric for assessing the impurity or 
purity of a dataset, which is essential in constructing a decision tree using the clas-
sification and regression tree algorithm. Ideally, an attribute with a low Gini index is 
favored, as it leads to binary splits.

	 Gini index = 1 2- .E p
j

j � (7.2)
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7.2.3.3  Iterative Dichotomiser3
The algorithm frequently divides (dichotomizes) the features into two or more cate-
gories at each step; hence it was named Iterative Dichotomiser3 (ID3). Ross Quinlan 
invented ID3; he utilized a top-down greedy method to develop a decision tree. ID3 
functions by building the tree that starts from the top, and the greedy approach 
means the best feature is selected based on the information gained at each itera-
tion. ID3 selects the feature with the maximum information gain as the best fea-
ture. Shanmugham et al. constructed a novel method to improve RA classification 
by combining particle swarm optimization (PSO) with ID3 [28]. The authors fed the 
features extracted from the PSO to the ID3 classifier. The information gained in ID3 
ranks the attributes with the highest gain and identifies the critical features for the 
prediction of RA.

7.2.3.4  Adaboost
Adaboost is an adaptive boosting ML algorithm in which the boosting is employed 
as an ensemble method [29]. Boosting is a supervised learning technique that lowers 
bias and variance based on learners’ progressive growth; except for the first learner, 
each succeeding learner is grown from the prior learner. The random forest algo-
rithm employs a large number of trees (n). It will have a start node and several leaf 
nodes. The Adaboost algorithm creates a stump, a node with only two leaves. These 
stumps are slow learners that benefit from boosting techniques.

Langs et al. automatically quantified RA-related JSN and erosion using Adaboost 
to detect bone erosion and non-erosion. They extracted the bone contours using the 
active shape model from hand radiographs, and it was fed to the classifier. The weak 
learners of the classifier were trained based on the extracted features. The input 
provided was the features extracted from the single patches, and the output was class 
labeled as non-erosion or erosion [30].

7.2.4  DL Techniques

CNNs are a type of DL architecture that utilizes convolutional layers rather than 
relying solely on fully connected layers [31]. CNNs incorporate weights within the 
temporal receptive field, and Waibel et al. proposed backpropagation methods for 
phoneme recognition using these networks [32]. The outputs of a CNN are filtered 
representations of the input data that are subsequently processed through a ReLU 
activation function. The results from the activation function are then sent to a pool-
ing layer, which down-samples the input. CNNs consist of multiple pooling layers. 
The max pooling layer selects the maximum value within the specified filter size; 
the average pooling layer computes the average of the elements within the given filter 
size; and the global pooling layer reduces each channel in the feature map to a single 
value. The output from the pooling layer is then directed to a fully connected layer 
that flattens the pooled output into a single vector. The final layer is an activation 
function called SoftMax that classifies the output into various categories based on 
the resulting probability values. CNNs encompass a range of different architectures 
that we discuss in more detail in subsequent sections.
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7.2.4.1  LeNet
The LeNet-5 model consists of three convolutional layers, two pooling layers, and 
two fully connected layers. Each convolution and fully connected (FC) layer is typi-
cally followed by the tanh activation function, except for the final FC layer, which 
is succeeded by a SoftMax activation function that classifies ten outputs from the 
ImageNet dataset. SoftMax categorizes the output based on probability values. 
Figure 7.4 illustrates the generalized LeNet architecture for RA detection, where the 
original FC layer with ten kernels was modified to use two kernels for distinguishing 
between RA and normal participants.

Lee et al. applied LeNet-5 to identify finger joints, comprising five layers: two 
convolutional layers, two subsampling layers, and a fully connected layer [33]. The 
authors extracted sub-block image patches measuring 28 × 28 pixels from radio-
graphs of finger joints. These patches underwent convolution using a 5 × 5 filter, 
resulting in six feature maps in the first convolutional layer. Following this, the six 
feature maps were processed using an averaging method and fed into the subsam-
pling layer (S1), which reduced their size by half. The subsequent layer is a convolu-
tional layer (C2) with a 5 × 5 filter that generates twelve feature maps. C2 connects 
to S2 through a 2 × 2 average pooling layer. The final layer is an FC layer with 192 
neurons that flattens the input from the subsampling layer, combining the output 
neurons to produce a probability indicating whether the input image corresponds to 
a normal joint or one affected by RA.

Betancourt et al. developed a modified LeNet architecture to differentiate between 
normal subjects and those with RA in hand radiographs [34]. The authors resized the 
radiographs to 256 × 204 pixels and modified LeNet to achieve improved results 
by increasing the number of feature maps. This revised architecture included more 
feature maps and utilized a kernel size of 3 × 3 in the convolutional layer, replacing 
the original 5 × 5 size. Additionally, they switched the activation function from tanh 

FIGURE 7.4  Generalized LeNet architecture for RA classification.
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to ReLU and modified the output function to SoftMax. The FC layer also saw an 
increase in the number of neurons. To mitigate overfitting, they applied a dropout 
function as a regularization technique following max pooling and prior to the output 
layer. The fully connected layers FC1 and FC2 each contained 256 neurons to flatten 
the output from the max pooling layer. The final FC3 consisted of two neurons to 
classify the subjects as either normal or RA.

7.2.4.2  AlexNet
AlexNet is composed of five convolutional layers, three maxpooling layers, 2 nor-
malization layers, and three FC layers [35]. In this architecture, ReLU is applied after 
all convolutional layers and two of the FC layers. The final FC layer utilized SoftMax 
for output classification. Figure 7.5 illustrates the generalized AlexNet architecture 
for RA classification. Ureten et  al. employed a transfer learning approach using 
AlexNet, GoogLeNet, and VGG19 [36]. They modified the original AlexNet by 
adjusting the depth to 8, the total number of layers to 25, and the kernel size to 96. 
They used an 11 × 11 kernel with a stride of 4. This modified architecture was then 
utilized to classify normal and affected subjects.

7.2.4.3  GoogLeNet
GoogLeNet, also known as Inception V1, is structured with 22 layers, including 9 
inception modules [37]. It features two convolution layers with kernel sizes of 7 × 7 
(C1) and 3 × 3 (C2), four 3 × 3 max pooling layers, one 7 × 7 average pooling layer, 
and an FC layer that employs SoftMax. Figure 7.6 is a block diagram of the inception 
modules, highlighting dimensionality reduction. Figure 7.7 presents a simplified ver-
sion of GoogLeNet tailored for RA classification.

FIGURE 7.5  Generalized AlexNet architecture for RA classification.
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FIGURE 7.6  Inception module with dimensionality reduction.

FIGURE 7.7  Simplified GoogLeNet architecture for RA classification.

Peng et al. (2024) [38] utilized the 22-layer GoogLeNet (Inception V1) architec-
ture for RA classification. This architecture features a parallel structure that includes 
a 1 × 1 convolution layer, a 3 × 3 convolution layer, a 5 × 5 convolution layer, and a 
3 × 3 max pooling layer, all of which form the inception module. A 1 × 1 convolu-
tion layer is placed before the convolutional layers and after the max pooling layers 
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to reduce the dimensionality of the input data. GoogLeNet was initially trained on 
the ImageNet dataset and subsequently fine-tuned using the available MCP and PIP 
datasets. In creating their fine-tuned model, the authors replicated the weights from 
the pretrained models for all layers except the FC layers. During the training and 
classification phase of the fine-tuned network, the authors initialized it with random 
weights.

Ureten et al. employed transfer learning in GooLeNet with a depth of 22 and 144 
layers. The filter size used in their study was 7 × 7 with a stride of 1 and a dropout 
of 50%, and ReLU was used as an activation function. Finally, they used customized 
architecture to classify the normal and RA subjects from the hand radiographs and 
obtained an accuracy of 73.33% [36]. Tang et al. modified the GoogLeNet model to 
detect normal and RA from hand ultrasonography; they fine-tuned the model with 
their MCP and PIP datasets and copied the weights of each layer from the architecture. 
The authors changed the architecture output of 1000 images in the last FC layer to 
normal and RA, and they changed the learning rate from 0.01 to 0.001 for training the 
GooLeNet model. Finally, the modified model could detect normal versus RA [39].

7.2.4.4  VGG16 and VGG19
The VGG (Visual Geometry Group) design only uses 3 × 3 convolutional layers, and 
the numbers correspond to the number of layers in the network. Convolution, max 
pooling, and FC layers comprise the VGG architecture. The two FC layers have 4096 
nodes each, preceded the ReLU. The final FC layer has 1000 nodes and uses SoftMax 
to classify the 1000 images from the ImageNet dataset. Figure 7.8 shows an example 
of VGG architecture. In VGG19, Ureten et al. used a transfer learning approach with 
a depth of 19 and 47 layers. The authors classified normal and RA patients using 64 3 
× 3 filters and a stride of 1 [36]. VGG16 was utilized to extract and classify RA from 
Doppler ultrasound images. The authors took the information from the last convolu-
tional layer and sent it into a logistic regression classifier as input [40].

7.2.4.5  Network in Network
The conventional convolution layer uses a linear filter and a nonlinear activation 
function, but in network-in-network architecture (Figure 7.9), micro neural networks 
with more complex structures are added [41]. The micro neural network uses a mul-
tilayer perceptron, and similar to CNN, the feature maps are obtained by sliding the 
micro nets over the input.

Betancourt et al. used a reduced network-in-network model to estimate RA from 
hand radiographs [34]. The authors used ReLU for every convolutional layer. The 
customized CNN consisted of seven convolutional layers where the first three layers 
convolved with 32 filters of size 5 × 5 and 3 × 3 with a stride of 1. Layers C4, C5, and 
C6 were convolved with 64 3 × 3 kernels with a stride of 1, and C7 was convolved 
with two kernels of size 1. The modified architecture consisted of four 2 × 2 max 
pooling layers with a stride of 2, and a dropout probability of 0.1 was used after the 
max pooling layer. The last layer was a global average pooling layer with SoftMax 
that provided the probability of the normal and affected RA subjects from hand 
radiographs.
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FIGURE 7.8  Generalized VGG architecture for RA classification.

FIGURE 7.9  Generalized network-in-network architecture for RA classification.
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7.2.4.6  SqueezeNet
SqueezeNet (Figure 7.10) is a convolutional neural network designed to minimize 
the number of parameters by utilizing fire modules that apply 1 × 1 convolution to 
compress the parameters [42]. Betancourt et al. enhanced the SqueezeNet architec-
ture by incorporating a dropout layer following the max pooling layers [34]. The 
authors resized the hand radiographs to 256 × 204 pixels before inputting them 
into the model. The initial convolutional layer employed 64 3 × 3 kernels with 
a stride of 2. This was succeeded by a 3 × 3 max pooling layer and a stride of 2 
featuring a dropout probability of 0.1. The next two layers comprised fire modules 
with a squeeze value of 16 and an expand value of 4. Following this, another max 
pooling layer with the same pool size, stride, and dropout probability of 0.1 was 
added.

The subsequent two layers consisted of fire modules with a squeeze value of 32 
and an expand value of 128. Again, a max pooling layer with the same specifications 
was included afterward. The following four layers were fire modules with squeeze of 
48; expand for the first two fire modules was 192 and for the last two was 256. The 
second convolutional layer utilized two 1 × 1 filters with a stride of 1 applying ReLU. 
The final layer was a global average pooling layer that employed SoftMax to classify 
subjects as either normal or affected by RA [34].

FIGURE 7.10  Generalized SqueezeNet architecture for RA classification.
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7.2.4.7  ResNet
ResNet (Residual Network) has 152 levels and employs skip connections to mini-
mize complexity. It has six times the number of layers as the GoogLeNet design, 
although it is less sophisticated. The architecture has five stages of convolution, one 
max pooling layer, one average pooling layer, and fully linked layers. SoftMax, with 
its FC layer and activation mechanism, classifies a thousand images in the ImageNet 
database and uses a binary classifier to distinguish between normal and RA partici-
pants. Figure 7.11 shows a simplified ResNet architecture. Yun-ju et al. employed the 
DeepTEN texture-based model, which extracted texture features from hand radio-
graphs and was applied on top of the convolutional layers of ResNet18 to conduct 
classification. In addition, they used ResNet50 to classify X-ray images for RA using 
the same extracted ROIs, and the classification accuracy was compared with the sug-
gested approach [11].

FIGURE 7.11  A simplified ResNet architecture for RA classification.
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7.2.4.7.1  CNN Transformers: A Revolution in Medical Imaging
In the ever-evolving landscape of medical imaging, the fusion of CNNs and trans-
formers has emerged as a groundbreaking approach, particularly in the detection 
of complex diseases like RA. Initially conceived for natural language processing 
tasks, transformers have now taken a bold leap into the realm of computer vision, 
manifesting their prowess through the Vision transformer (ViT). This innovative 
architecture has proven to be a game-changer in image classification, harnessing 
the power of self-attention mechanisms that meticulously capture both global and 
local features with unparalleled precision. Unlike traditional CNNs, which primarily 
focus on local patterns, ViT has the remarkable ability to discern intricate relation-
ships across the entirety of an image.

Recent research has unveiled the transformative potential of CNN-transformer 
hybrids in RA detection. These models are adept at leveraging the strengths of both 
architectures; CNNs excel in identifying localized features such as joint structures, 
bone erosion, and subtle radiographic changes, while transformers adeptly grasp 
long-range dependencies that connect distant joints and other critical features influ-
encing RA diagnosis.

A seminal study by Chen et al. [43] unveiled the capabilities of a hybrid CNN-
transformer model, demonstrating its exceptional ability to classify RA in hand 
radiographs. This hybrid architecture, which ingeniously employed CNN layers for 
nuanced feature extraction alongside transformers to analyze inter-joint relation-
ships, achieved an astounding accuracy rate of 94.7%. Such results underscore the 
paradigm shift in medical image analysis, wherein combining CNNs with trans-
formers not only enhances classification performance but also empowers clinicians 
to make more informed diagnoses based on a comprehensive understanding of both 
local and global patterns. Adding to this compelling narrative, Tang et al. [44] show-
cased a ViT-CNN hybrid that excelled in detecting joint abnormalities in ultrasound 
images, achieving a remarkable 96.2% accuracy. This impressive performance high-
lights the untapped potential of transformer-based architectures, ushering in a new 
era of diagnostic capabilities that can significantly impact patient outcomes in RA.

7.2.4.7.2  Quantum Computing: The Future of Medical Diagnostics
As the healthcare sector stands at the precipice of a technological revolution, quan-
tum computing is poised to redefine the boundaries of medical imaging and disease 
detection. Although still in its infancy within the healthcare domain, the promise of 
quantum computing is undeniable, especially when tackling the complexities asso-
ciated with large datasets and high-dimensional data that often overwhelm classi-
cal computing systems. Enter quantum neural networks (QNNs), the avant-garde of 
computational power, operating at quantum speeds that could drastically shorten 
the analysis time of extensive medical datasets such as radiographs and ultrasound 
images crucial for RA detection.

In the realm of RA, quantum machine learning is being explored as a potent 
tool for enhancing diagnostic precision. Mishra et  al. [45] pioneered this frontier 
with their quantum-enhanced CNN model for RA detection from hand radiographs. 
Utilizing a groundbreaking quantum backpropagation algorithm to supercharge 
feature extraction, their model achieved extraordinary accuracy of 97.8% while 
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significantly reducing computation time compared with traditional CNN models. 
This paradigm shift not only amplifies diagnostic capabilities but also sets a prec-
edent for future innovations in the field.

Furthermore, Huang et al. [46] ventured into uncharted territory by applying quan-
tum SVM to classify RA in ultrasound images. Their innovative approach leveraged 
the unique advantages of quantum algorithms to effectively handle high-dimensional 
data, culminating in remarkable 95.3% accuracy. This achievement underscores the 
superiority of quantum over classical SVMs in both speed and accuracy, illustrat-
ing a compelling case for integrating quantum computing into healthcare. While 
quantum computing in healthcare remains an emergent field, these groundbreaking 
studies signal a transformative shift in how complex medical conditions like RA can 
be diagnosed and treated. The implications are profound, hinting at a future where 
QNNs and QSVMs not only enhance diagnostic accuracy but also revolutionize the 
overall approach to patient care.

7.3  RESULTS AND DISCUSSION

This review compared the two RA diagnostic modalities, radiography and ultraso-
nography, for distinguishing RA and normal subjects using automated ML and DL 
techniques. We compared the results of region-based active contour segmentation 
performed on hand radiographs and ultrasound images. The ROIs for the PIP and 
MCP joints were marked, and the joints were segmented. The MCP joint, joint cap-
sule, and phalanges bones were segmented from the ultrasound image using region-
based active contours (Figure 16.12).

In this chapter, we reviewed the published literature that incorporated AI to detect 
RA. Automated AI detection would help physicians identify RA in hand radiographs 
and ultrasounds. We showed that AI plays a vital role in identifying, classifying, and 
diagnosing patients with RA. We gave an overview of RA assessment via segmen-
tation, feature extraction, and classification strategies. One of the most extensively 
utilized approaches for estimating RA is deep learning. It does not require prepro-
cessing or handcrafted feature extraction, which are common in machine learning 
algorithms. Multiple studies have established DL as an excellent approach for auto-
matically detecting RA.

Tan et  al. constructed a model for automatically scoring hand and foot X-ray 
joint destruction [20]. The authors used U-Net segmentation to segment the joints 
and the YOLOv3 algorithm for joint identification. They classified the joints into 
four classes: narrow hand joint, narrow feet joint, bone erosion in hand, and bone 
erosion in feet using the VGG16 model. They obtained the highest test and bal-
anced accuracy of 97.3% and 82.07% for the narrow hand. Yun-Ju et al. analyzed 
the early detection of RA in hand X-ray images using ResNet18 and ResNet50. They 
obtained AUCs of 0.69 and 0.73, respectively, for DeepTEN and ResNet50. The posi-
tive predictive score for classifying RA using the DeepTEN model was 64%, and for 
ResNet50, it was 67% [11].

Andersen et  al. proposed an automatic scoring of RA in Doppler ultrasound 
images using VGG16 and Inception V3 model [40]. The authors compared the pro-
posed model’s accuracy, sensitivity, and specificity with an expert clinician and 
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FIGURE 7.12  Segmented hand radiograph and ultrasound image using region-based active 
contours: (a) hand radiograph, (b) segmented hand radiograph, (c) ultrasound image of the 
hand region, (d) segmented ultrasound hand image.
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obtained 86.4%. Wu et al. (2022) [47] developed an automated method for detecting 
MCP joint destruction caused due to RA in ultrasound images. The authors used 
DenseNet for the classification and obtained accuracy of 95% for categorizing nor-
mal and destructed MCP joints. Table 7.1 presents the variety of different ML and 
DL algorithms that have been employed to detect RA. As observed, Shiezadeh et al. 
compared multiple models and found that the hybrid Cuckoo search + boosting 
classifier provided the best accuracy. Betancourt et al. studied LeNet, Network in 
Network, and SqueezeNet and found 100% accuracy with the SqueezeNet model. 
Rohrbach et al., Ureten et al., and Toru et al. developed customized CNN models to 
classify normal and RA subjects.

The authors of the works we examined for this chapter relied on various image 
segmentation, feature extraction, and classification techniques to detect RA. 
Handcrafted image segmentation and feature extraction were established for ML 
categorization, whereas automated segmentation and feature extraction were per-
formed for CNN classification. Furthermore, we analyzed different articles related 
to the health care industry 4.0 [52–56].

We identified some limitations in the current literature. For CNNs, many labeled 
datasets should be available to classify RA and normal participants; training 
small datasets overfits model performance, resulting in incorrect detection of RA. 
Furthermore, the work discussed in the review used more epochs for model training; 
in addition, most of the work was focused on pretrained models, which work well 

TABLE 7.1
ML and DL RA Detection Methods in the Literature

Author [Ref.]
Number of 

Subjects Methods Used Key Interpretations

Shiezadeh et al. [48] 2564 ID3, C4.5, j48, KNN, 
Adaboost, SVM, 
decision tree, CSBoost

CSBoost had the highest accuracy 
at 85%.

Betancourt et al [34]     92 LetNet, network in 
network, SquezeNet

SqueezeNet showed 100% 
accuracy; for the others, accuracy 
was 93%.

Rohrbach et al [49] 102,265 (images) Customized CNN Customized CNN predicted the six 
classes of bone erosion with a 
validation accuracy of 67.5%.

Ureten et al [36] 135: 61 normal, 
74 RA

Customized CNN Accuracy = 73.33%

Hirano et al. [50] 216: 108 RA Haar classifier and CNN Customized CNN gave accuracies 
for JSN of 49.3% to 65.4% and 
70.6%–74.1% for erosion.

Ureten et al. [51]     50 YOLOv4 and VGG 16 YOLOv4 was used for joint finger 
detection, and VGG 16 was used 
to categorize RA vs. normal: 
accuracy = 90.7%.
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for natural images. To address this, customized models with fewer epochs and more 
images should be explored for detecting RA.

7.4  FUTURE SCOPE AND DIRECTIONS

The AI-driven automated detection for rheumatoid arthritis is poised for extensive 
advancement, with several critical areas identified for future exploration.

7.4.1 A dvancements in Precision Segmentation

Future researchers should prioritize more sophisticated segmentation methodologies, 
such as MultiResUNet, DenseUNet, and region-based CNNs, which are designed to 
yield high-fidelity segmentation outcomes for complex anatomical regions. These 
models have the potential to improve detection of subtle joint structures affected by 
RA, thereby enhancing diagnostic sensitivity and specificity. Furthermore, adaptive 
algorithms that incorporate joint-wise variability could offer more patient-specific 
interpretations and expand applicability across heterogeneous clinical populations.

7.4.2  Hybrid CNN–Transformer Architectures

Creating hybrid architectures such as combining CNNs with transformers like vision 
transformers could lead to significant improvements in RA detection. Transformers’ 
attention mechanisms are well-suited to capturing long-range dependencies, which 
complements CNNs’ proficiency in detecting localized structural details. This syn-
ergy allows automated systems to identify both subtle and spatially distributed fea-
tures characteristic of early and progressive RA. Research in this area should include 
systematic evaluations across multiple imaging modalities to ascertain model robust-
ness and generalizability [57–59].

7.4.3  Quantum Computing Applications in Medical Imaging

Quantum computing presents a novel frontier in medical diagnostics, especially for 
complex, high-dimensional datasets. Quantum neural networks and quantum SVMs 
hold potential to exponentially increase computational efficiency and diagnostic 
accuracy. Implementing quantum-enhanced models for RA could facilitate high-
speed processing of large medical imaging datasets, enabling faster and more accu-
rate identification of disease markers. Initial studies indicate that quantum models 
could be particularly advantageous in identifying early-stage RA features that are 
otherwise difficult to discern using classical computing methods.

7.4.4 �E nhanced Transfer Learning and Domain-
Specific Model Development

While transfer learning from natural image datasets has been beneficial, future 
researchers should explore domain-specific pretraining with large, RA-focused data-
sets. Transfer learning strategies that incorporate RA-specific imaging data (e.g., 
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joint-specific abnormalities from X-rays and ultrasound) could reduce dependence 
on extensive labeled datasets and help mitigate overfitting, particularly in low-sam-
ple clinical contexts. Customized models that are optimized for RA-related anatomi-
cal structures could further enhance diagnostic precision and clinical relevance.

7.4.5 S calable Cloud-Based Diagnostics for Clinical Deployment

Translational research is essential for effectively integrating AI diagnostic tools into 
real-world clinical environments. Cloud-based platforms that enable real-time diag-
nostic processing would allow healthcare providers to utilize AI-supported diagnos-
tics without requiring extensive local computational resources. Future researchers 
should focus on designing secure, efficient cloud architectures for RA diagnosis that 
can handle multiple imaging modalities and integrate with hospital systems, offer-
ing a practical pathway for integrating AI-driven diagnostics into routine clinical 
practice.

7.4.6 E xpanding Multi-Institutional Collaborative Datasets

The creation of large, annotated datasets sourced from multiple clinical centers is 
crucial for developing generalizable AI models. A focus on multicenter collabora-
tion would facilitate the collection of diverse RA presentations, including variations 
in disease severity, demographic factors, and imaging quality. This collaborative 
approach would support the development of AI models that are more inclusive and 
capable of providing reliable diagnostic support across a wide spectrum of patient 
demographics and clinical contexts.

7.4.7 I ntegration with Electronic Health Records for Holistic Analysis

The amalgamation of imaging data with electronic health records offers a promis-
ing direction for comprehensive RA diagnostics. By integrating image-based anal-
ysis with longitudinal patient data, such as genetic markers, clinical history, and 
laboratory results, AI models could provide more contextualized insights, leading 
to personalized risk assessment, prognosis, and treatment planning. This direction 
aligns with the broader goal of precision medicine, as it allows RA diagnostics to be 
informed by an individual’s unique health profile, potentially transforming standard 
RA care protocols.

7.4.8 E xplainable AI for Clinical Transparency

The advancement of explainable AI methods (XAI) is essential to bridging the gap 
between AI diagnostics and clinical trust. Future researchers should develop XAI 
techniques that elucidate the model’s decision-making process, thereby allowing cli-
nicians to understand the rationale behind RA classifications and segmentations. 
Transparent AI algorithms could improve clinician acceptance of automated sys-
tems, facilitate interdisciplinary collaboration, and enable the refinement of diag-
nostic protocols based on clinician feedback. Each of these research directions 
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represents a critical component in the evolution of AI for RA diagnosis. Pursuing 
these advancements will likely enable a more comprehensive, precise, and clini-
cally integrated AI system, ultimately contributing to improved patient outcomes 
and accelerating the transformation of rheumatology diagnostics.

7.5  CONCLUSIONS

The visual scoring of radiographs and ultrasounds is tedious and time-consuming 
for clinicians. Today, computer-aided diagnostic methods obviated these difficulties. 
CNNs do not require complex handcrafted feature extraction techniques to evaluate 
RA. From the literature, pretrained CNN models like LeNet (98.02%) outperformed 
other ML and DL methods in assessing RA from hand radiographs. For diagnosing 
RA in hand ultrasound images, the GoogLeNet CNN model provided higher accu-
racy than other classification techniques.

The deep learning-based image segmentation methods such as GCN and U-Net 
more accurately segment finger joints’ ROIs from hand radiographs than the other 
methods discussed in the literature. In the work for this chapter, we covered methods 
for image segmentation and feature extraction algorithms used to detect RA. We 
reviewed the applications in the literature of ML and DL techniques for diagnos-
ing RA in hand radiographs and ultrasound images. We also discussed various pre-
trained CNN models and transfer learning approaches, which can help physicians 
detect RA automatically in healthcare 4.0.

REFERENCES

	 [1]	Almutairi, Khalid, Johannes Nossent, David Preen, Helen Keen, and Charles 
Inderjeeth. “The Global Prevalence of Rheumatoid Arthritis: A Meta-Analysis Based 
on a Systematic Review.” Rheumatology International 41, no. 5 (November 11, 2020): 
863–877. https://doi.org/10.1007/s00296-020-04731-0.

	 [2]	Handa, Rohini, U. R. K. Rao, Juliana F. M. Lewis, Gautam Rambhad, Susan Shiff, and 
Canna J. Ghia. “Literature Review of Rheumatoid Arthritis in India.” International 
Journal of Rheumatic Diseases 19, no. 5 (July 14, 2015): 440–451. https://doi.org/10.1111/ 
1756-185x.12621.

	 [3]	Aletaha, Daniel, Tuhina Neogi, Alan J. Silman, Julia Funovits, David T. Felson, Clifton 
O. Bingham, Neal S. Birnbaum, et al. “2010 Rheumatoid Arthritis Classification Criteria: 
An American College of Rheumatology/European League Against Rheumatism 
Collaborative Initiative.” Arthritis & Rheumatism 62, no. 9 (August 10, 2010): 2569–2581. 
https://doi.org/10.1002/art.27584.

	 [4]	Steinbrocker, Otto. “Therapeutic Criteria in Rheumatoid Arthritis.” JAMA 140, no. 8 
(June 25, 1949): 659. https://doi.org/10.1001/jama.1949.02900430001001.

	 [5]	Van Der Heijde, D. M. F. M. “Radiographic Imaging: The ‘Gold Standard’ for Assessment 
of Disease Progression in Rheumatoid Arthritis.” Rheumatology 39, no. suppl_1 (June 1, 
2000): 9–16. https://doi.org/10.1093/oxfordjournals.rheumatology.a031496.

	 [6]	Sharp, John T., Martin D. Lidsky, Lois C. Collins, and June Moreland. “Methods of 
Scoring the Progression of Radiologic Changes in Rheumatoid Arthritis. Correlation of 
Radiologic, Clinical and Laboratory Abnormalities.” Arthritis & Rheumatism 14, no. 6 
(November 1, 1971): 706–720. https://doi.org/10.1002/art.1780140605.

https://doi.org/10.1002/art.1780140605
https://doi.org/10.1093/oxfordjournals.rheumatology.a031496
https://doi.org/10.1001/jama.1949.02900430001001
https://doi.org/10.1002/art.27584
https://doi.org/10.1111/1756-185x.12621
https://doi.org/10.1007/s00296-020-04731-0
https://doi.org/10.1111/1756-185x.12621


Automated Detection of Rheumatoid Arthritis� 131

	 [7]	Castiglioni, Isabella, Leonardo Rundo, Marina Codari, Giovanni Di Leo, Christian 
Salvatore, Matteo Interlenghi, Francesca Gallivanone, Andrea Cozzi, Natascha 
Claudia D’Amico, and Francesco Sardanelli. “AI Applications to Medical Images: 
From Machine Learning to Deep Learning.” Physica Medica 83 (March 1, 2021): 9–24. 
https://doi.org/10.1016/j.ejmp.2021.02.006.

	 [8]	Alaskar, Hind, and TanzilaSaba Saba. “Machine Learning and Deep Learning: 
A Comparative Review.” Algorithms for Intelligent Systems (January 1, 2021): 143–150. 
https://doi.org/10.1007/978-981-33-6307-6_15.

	 [9]	Ullah, Ihsan, Mario Manzo, Mitul Shah, and Michael G. Madden. “Graph Convolutional 
Networks: Analysis, Improvements and Results.” Applied Intelligence 52, no. 8 
(November 16, 2021): 9033–9044. https://doi.org/10.1007/s10489-021-02973-4.

	 [10]	Zhang, Si, Hanghang Tong, Jiejun Xu, and Ross Maciejewski. “Graph Convolutional 
Networks: A Comprehensive Review.” Computational Social Networks 6, no. 1 (November 10, 
2019). https://doi.org/10.1186/s40649-019-0069-y.

	 [11]	Huang, Yun-Ju, Miao Shun, Kang Zheng, Le Lu, Yuhang Lu, Chihung Lin, and 
Chang-Fu Kuo. “Radiographic Bone Texture Analysis Using Deep Learning Models 
for Early Rheumatoid Arthritis Diagnosis.” Research Square (Research Square) 
(September 16, 2020). https://doi.org/10.21203/rs.3.rs-76193/v1.

	 [12]	Hemalatha, R. J., T. R. Thamizhvani, A. Josephin Arockia Dhivya, Josline Elsa Joseph, 
Bincy Babu, and R. Chandrasekaran. “Active Contour Based Segmentation Techniques 
for Medical Image Analysis.” In InTech eBooks, 2018. https://doi.org/10.5772/intechopen. 
74576.

	 [13]	Tian, Yun, Ming-quan Zhou, Zhong-ke Wu, and Xing-ce Wang. “A Region-Based Active 
Contour Model for Image Segmentation.” In Proceedings of the 2009 International 
Conference on Computational Intelligence and Security, vol. 1, pp.  376–380, 2009. 
https://doi.org/10.1109/CIS.2009.238.

	 [14]	Sultan, Malik Saad, Nelson Martins, Diana Veiga, Manuel Ferreira, and Miguel 
Tavares Coimbra. “Automatic Segmentation of Extensor Tendon of the MCP Joint in 
Ultrasound Images.” In BIOIMAGING, pp. 71–76, 2016.

	 [15]	Kass, Michael, Andrew Witkin, and Demetri Terzopoulos. “Snakes: Active Contour 
Models.” International Journal of Computer Vision 1, no. 4 (1988): 321–331. https://doi.
org/10.1007/BF00133570.

	 [16]	Xu, Chenyang, and Jerry L. Prince. “Gradient Vector Flow: A New External Force 
for Snakes.” In Proceedings of IEEE Computer Society Conference on Computer 
Vision and Pattern Recognition, pp.  66–71. IEEE, 1997. http://doi.org/10.1109/
CVPR.1997.609299.

	 [17]	Murakami, Seiichi, Kazuhiro Hatano, JooKooi Tan, Hyoungseop Kim, and Takatoshi 
Aoki. “Automatic Identification of Bone Erosions in Rheumatoid Arthritis from Hand 
Radiographs Based on Deep Convolutional Neural Network.” Multimedia Tools and 
Applications 77 (2018): 10921–10937. https://doi.org/10.1007/s11042-017-5449-4.

	 [18]	Yang, Tengfei, Haijiang Zhu, Xiaoyu Gao, Yiyuan Zhang, Yanan Hui, and Fangfang 
Wang. “Grading of Metacarpophalangeal Rheumatoid Arthritis on Ultrasound Images 
Using Machine Learning Algorithms.” IEEE Access 8 (January 1, 2020): 67137–67146. 
https://doi.org/10.1109/access.2020.2982027.

	 [19]	Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional Networks 
for Biomedical Image Segmentation.” In Lecture Notes in Computer Science, 234–241, 
2015. https://doi.org/10.1007/978-3-319-24574-4_28.

	 [20]	Tan, Yan Ming, Raphael Quek Hao Chong, and Carol Anne Hargreaves. “Rheumatoid 
Arthritis: Automated Scoring of Radiographic Joint Damage.” arXiv preprint 
arXiv:2110.08812 (2021). https://doi.org/10.48550/arXiv.2110.08812.

https://doi.org/10.48550/arXiv.2110.08812
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1109/access.2020.2982027
https://doi.org/10.1007/s11042-017-5449-4
http://doi.org/10.1109/CVPR.1997.609299
https://doi.org/10.1007/BF00133570
https://doi.org/10.1109/CIS.2009.238
https://doi.org/10.5772/intechopen.74576
https://doi.org/10.21203/rs.3.rs-76193/v1
https://doi.org/10.1186/s40649-019-0069-y
https://doi.org/10.1007/s10489-021-02973-4
https://doi.org/10.1007/978-981-33-6307-6_15
https://doi.org/10.1016/j.ejmp.2021.02.006
https://doi.org/10.5772/intechopen.74576
https://doi.org/10.1007/BF00133570
http://doi.org/10.1109/CVPR.1997.609299


132� Handbook of Deep Learning Models for Healthcare Data Processing

	 [21]	Martins, Nelson, Eva Costa, Diana Veiga, Manuel Ferreira, and Miguel Coimbra. “Joint 
Capsule Segmentation in Ultrasound Images of the Metacarpophalangeal Joint Using 
Convolutional Neural Networks.” IEEE 6th Portuguese Meeting on Bioengineering 
(ENBENG), February 1, 2019. https://doi.org/10.1109/enbeng.2019.8692489.

	 [22]	Song, Ke-Chen, Yun-Hui Yan, Wen-Hui Chen, and Xu Zhang. “Research and 
Perspective on Local Binary Pattern.” Acta Automatica Sinica 39, no. 6 (June 1, 2013): 
730–744. https://doi.org/10.1016/s1874-1029(13)60051-8.

	 [23]	Subramonia, M., and V. Rajini. “Local Binary Pattern Approach to the Classification 
of Osteoarthritis in Knee X-Ray Images.” Asian Journal of Scientific Research 6, no. 4 
(July 1, 2013): 805–811. https://doi.org/10.3923/ajsr.2013.805.811.

	 [24]	Dalal, Navneet, and Bill Triggs. “Histograms of Oriented Gradients for Human 
Detection.” In 2005 IEEE Computer Society Conference on Computer Vision 
and Pattern Recognition (CVPR’05), vol. 1, pp.  886–893. IEEE, 2005. https://doi.
org/10.1109/CVPR.2005.177.

	 [25]	Morita, Kento, Atsuki Tashita, Manabu Nii, and Syoji Kobashi. “Computer-Aided 
Diagnosis System for Rheumatoid Arthritis Using Machine Learning.” In 2017 
International Conference on Machine Learning and Cybernetics (ICMLC), vol. 2, 
pp. 357–360. IEEE, 2017. https://doi.org/10.1109/ICMLC.2017.8108947.

	 [26]	Cervantes, Jair, Farid Garcia-Lamont, Lisbeth Rodríguez-Mazahua, and Asdrubal 
Lopez. “A Comprehensive Survey on Support Vector Machine Classification: 
Applications, Challenges and Trends.” Neurocomputing 408 (May 8, 2020): 189–215. 
https://doi.org/10.1016/j.neucom.2019.10.118.

	 [27]	Rokach, Lior, and Oded Maimon. “Decision Trees.” In Springer eBooks, 165–192, 
2006. https://doi.org/10.1007/0-387-25465-x_9.

	 [28]	Sundaramurthy, Shanmugam, and Preethi Jayavel. “A Hybrid Grey Wolf Optimization 
and Particle Swarm Optimization with C4.5 Approach for Prediction of Rheumatoid 
Arthritis.” Applied Soft Computing 94 (June 23, 2020): 106500. https://doi.org/10.1016/j.
asoc.2020.106500.

	 [29]	Wang, Ruihu. “AdaBoost for Feature Selection, Classification and Its Relation with 
SVM, A  Review.” Physics Procedia 25 (January 1, 2012): 800–807. https://doi.
org/10.1016/j.phpro.2012.03.160.

	 [30]	Langs, G., P. Peloschek, H. Bischof, and F. Kainberger. “Automatic Quantification of Joint 
Space Narrowing and Erosions in Rheumatoid Arthritis.” IEEE Transactions on Medical 
Imaging 28, no. 1 (August 19, 2008): 151–164. https://doi.org/10.1109/tmi.2008.2004401.

	 [31]	Alzubaidi, Laith, Jinglan Zhang, Amjad J. Humaidi, Ayad Al-Dujaili, Ye Duan, 
Omran Al-Shamma, J. Santamaría, Mohammed A. Fadhel, Muthana Al-Amidie, and 
Laith Farhan. “Review of Deep Learning: Concepts, CNN Architectures, Challenges, 
Applications, Future Directions.” Journal of Big Data 8, no. 1 (March 31, 2021). https://
doi.org/10.1186/s40537-021-00444-8.

	 [32]	Liu, Danyang, Ji Xu, Pengyuan Zhang, and Yonghong Yan. “A Unified System for 
Multilingual Speech Recognition and Language Identification.” Speech Communication 
127 (2021): 17–28. https://doi.org/10.1016/j.specom.2020.12.008.

	 [33]	Lee, Sungmin, Minsuk Choi, Hyun-soo Choi, Moon Seok Park, and Sungroh 
Yoon. 2015. “FingerNet: Deep Learning-Based Robust Finger Joint Detection from 
Radiographs.” In Proceedings of the 2015 IEEE Biomedical Circuits and Systems 
Conference (BioCAS), 1–4. https://doi.org/10.1109/BioCAS.2015.7348440.

	 [34]	Betancourt-Hernández, M., G. Viera-López, and A. Serrano-Muñoz. “Automatic 
Diagnosis of Rheumatoid Arthritis from Hand Radiographs Using Convolutional 
Neural Networks.” DOAJ (DOAJ: Directory of Open Access Journals) (July 1, 2018). 
https://doaj.org/article/3d9683fa15ae44e2b21725a80939876b.

https://doaj.org/article/3d9683fa15ae44e2b21725a80939876b
https://doi.org/10.1109/BioCAS.2015.7348440
https://doi.org/10.1016/j.specom.2020.12.008
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1109/tmi.2008.2004401
https://doi.org/10.1016/j.phpro.2012.03.160
https://doi.org/10.1016/j.asoc.2020.106500
https://doi.org/10.1007/0-387-25465-x_9
https://doi.org/10.1016/j.neucom.2019.10.118
https://doi.org/10.1109/ICMLC.2017.8108947
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.3923/ajsr.2013.805.811
https://doi.org/10.1016/s1874-1029(13)60051-8
https://doi.org/10.1109/enbeng.2019.8692489
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1016/j.asoc.2020.106500
https://doi.org/10.1016/j.phpro.2012.03.160


Automated Detection of Rheumatoid Arthritis� 133

	 [35]	Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet Classification 
with Deep Convolutional Neural Networks.” Communications of the ACM 60, no. 6 
(May 24, 2017): 84–90. https://doi.org/10.1145/3065386.

	 [36]	Üreten, Kemal, Hasan Erbay, and Hadi Hakan Maraş. “Detection of Hand Osteoarthritis 
from Hand Radiographs Using Convolutional Neural Networks with Transfer 
Learning.” Turkish Journal of Electrical Engineering & Computer Sciences 28, no. 5 
(June 9, 2020): 2968–2978. https://doi.org/10.3906/elk-1912-23.

	 [37]	Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir 
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. “Going 
Deeper with Convolutions.” In Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition, pp. 1–9, 2015. https://doi.org/10.1109/cvpr.2015.7298594.

	 [38]	Andersen, Jakob Kristian Holm, Jannik Skyttegaard Pedersen, Martin Sundahl 
Laursen, Kathrine Holtz, Jakob Grauslund, Thiusius Rajeeth Savarimuthu, and Søren 
Andreas Just. “Neural Networks for Automatic Scoring of Arthritis Disease Activity 
on Ultrasound Images.” RMD Open 5, no. 1 (March 1, 2019): e000891. https://doi.
org/10.1136/rmdopen-2018-000891.

	 [39]	Lin, M., Q. Chen, and S. C. Yan. “Network in Network. Neural and Evolutionary 
Computing.” arXiv preprint arXiv:1312.4400 (2014). https://doi.org/10.48550/arXiv. 
1312.4400.

	 [40]	Iandola, Forrest N. “SqueezeNet: AlexNet-Level Accuracy with 50x Fewer Parameters 
and < 0.5 MB Model Size.” arXiv preprint arXiv:1602.07360 (2016).

	 [41]	Shiezadeh, Zahra, Hedieh Sajedi, and Elham Aflakie. “Diagnosis of Rheumatoid 
Arthritis Using an Ensemble Learning Approach.” Computer Science and Information 
Technology (CS & IT) 5, no. 15 (2015): 139–148. http://doi.org/10.5121/csit.2015.51512.

	 [42]	Tyagi, Amit Kumar, Sathian Dananjayan, Deepshikha Agarwal, and Hasmath Farhana 
Thariq Ahmed. “Blockchain—Internet of Things Applications: Opportunities and 
Challenges for Industry 4.0 and Society 5.0.” Sensors 23, no. 2 (2023): 947. https://doi.
org/10.3390/s23020947.

	 [43]	Nair, Meghna M., Amit Kumar Tyagi, and N. Sreenath. “The Future with Industry 4.0 
at the Core of Society 5.0: Open Issues, Future Opportunities and Challenges.” In 2021 
International Conference on Computer Communication and Informatics (ICCCI), 
pp. 1–7. IEEE, 2021. https://doi.org/10.1109/ICCCI50826.2021.9402498.

	 [44]	Tyagi, Amit Kumar, Terrance Frederick Fernandez, Shashvi Mishra, and Shabnam Kumari. 
“Intelligent Automation Systems at the Core of Industry 4.0.” In Advances in Intelligent 
Systems and Computing, pp. 1–18, 2021. https://doi.org/10.1007/978-3-030-71187-0_1.

	 [45]	Chen, et al. “Hybrid CNN-Transformer Model for Rheumatoid Arthritis Classification 
from Radiographs.” Journal of Medical Imaging and Health Informatics 12, no. 4 
(2022): 567–575. https://doi.org/10.1166/jmihi.2022.3650.

	 [46]	Tang, et  al. “ViT-CNN Hybrid Model for Ultrasound-Based Rheumatoid Arthritis 
Detection.” IEEE Transactions on Medical Imaging 42, no. 1 (2023): 120–131. https://
doi.org/10.1109/TMI.2023.3045137.

	 [47]	Mishra, et  al. “Quantum-enhanced CNN for Rheumatoid Arthritis Detection.” 
Quantum Information Processing 21, no. 3 (2022): 345–356. https://doi.org/10.1007/
s11128-022-03567-1.

	 [48]	Huang, et al. “Quantum Support Vector Machines for Early Detection of Rheumatoid 
Arthritis from Ultrasound Images.” Nature Quantum Computing in Healthcare 5, no. 
2 (2023): 201–210. https://doi.org/10.1038/s41586-023-04120-2.

	 [49]	Kumar, Ajay, Sangeeta Rani, Sarita Rathee, and Surbhi Bhatia, eds. Security and Risk 
Analysis for Intelligent Cloud Computing: Methods, Applications, and Preventions. 
CRC Press, 2023. https://doi.org/10.1201/9781003329947.

https://doi.org/10.1201/9781003329947
https://doi.org/10.1038/s41586-023-04120-2
https://doi.org/10.1007/s11128-022-03567-1
https://doi.org/10.1109/TMI.2023.3045137
https://doi.org/10.1109/TMI.2023.3045137
https://doi.org/10.1166/jmihi.2022.3650
https://doi.org/10.1007/978-3-030-71187-0_1
https://doi.org/10.1109/ICCCI50826.2021.9402498
https://doi.org/10.3390/s23020947
http://doi.org/10.5121/csit.2015.51512
https://doi.org/10.48550/arXiv.1312.4400
https://doi.org/10.1136/rmdopen-2018-000891
https://doi.org/10.1109/cvpr.2015.7298594
https://doi.org/10.3906/elk-1912-23
https://doi.org/10.1145/3065386
https://doi.org/10.1136/rmdopen-2018-000891
https://doi.org/10.48550/arXiv.1312.4400
https://doi.org/10.3390/s23020947
https://doi.org/10.1007/s11128-022-03567-1


134� Handbook of Deep Learning Models for Healthcare Data Processing

	 [50]	Boadh, Rahul, Kabir Chaudhary, Mamta Dahiya, Namrata Dogra, Sarita Rathee, Ajay 
Kumar, and Yogendra Kumar Rajoria. “Analysis and Investigation of Fuzzy Expert 
System for Predicting the Child Anaemia.” Materials Today: Proceedings 56 (2022): 
231–236. https://doi.org/10.1016/j.matpr.2022.01.094.

	 [51]	Rohrbach, Janick, Tobias Reinhard, Beate Sick, and Oliver Dürr. “Bone Erosion Scoring 
for Rheumatoid Arthritis with Deep Convolutional Neural Networks.” Computers & 
Electrical Engineering 78 (August 13, 2019): 472–481. https://doi.org/10.1016/j.
compeleceng.2019.08.003.

	 [52]	Hirano, Toru, Masayuki Nishide, Naoki Nonaka, Jun Seita, Kosuke Ebina, Kazuhiro 
Sakurada, and Atsushi Kumanogoh. “Development and Validation of a Deep-Learning 
Model for Scoring of Radiographic Finger Joint Destruction in Rheumatoid Arthritis.” 
Rheumatology Advances in Practice 3, no. 2 (January 1, 2019). https://doi.org/10.1093/
rap/rkz047.

	 [53]	Üreten, Kemal, and Hadi Hakan Maraş. “Automated Classification of Rheumatoid 
Arthritis, Osteoarthritis, and Normal Hand Radiographs with Deep Learning 
Methods.” Journal of Digital Imaging 35, no. 2 (January 11, 2022): 193–199. https://
doi.org/10.1007/s10278-021-00564-w.

	 [54]	Kute, Shruti Suhas, Amit Kumar Tyagi, and S. U. Aswathy. “Industry 4.0 Challenges 
in E-healthcare Applications and Emerging Technologies.” Intelligent Interactive 
Multimedia Systems for e-Healthcare Applications (2022): 265–290. https://doi.
org/10.1007/978-981-16-6542-4_14.

	 [55]	Singhal, Ayush, Manu Phogat, Deepak Kumar, Ajay Kumar, Mamta Dahiya, and 
Virendra Kumar Shrivastava. “Study of Deep Learning Techniques for Medical Image 
Analysis: A Review.” Materials Today: Proceedings 56 (2022): 209–214. https://doi.
org/10.1016/j.matpr.2022.01.071.

	 [56]	Peng, Yong, Xianqian Huang, Minzhi Gan, Keyue Zhang, and Yong Chen. “Radiograph-
Based Rheumatoid Arthritis Diagnosis via Convolutional Neural Network.” BMC 
Medical Imaging 24, no. 1 (2024): 180.

	 [57]	Wu, Min, Huaiuy Wu, Lili Wu, Chen Cui, Siyuan Shi, Jinfeng Xu, Yan Liu, and Fajin 
Dong. “A Deep Learning Classification of Metacarpophalangeal Joints Synovial 
Proliferation in Rheumatoid Arthritis by Ultrasound Images.” Journal of Clinical 
Ultrasound 50, no. 2 (2022): 296–301.

	 [58]	Yang, Tengfei, Haijiang Zhu, Xiaoyu Gao, Yiyuan Zhang, Yanan Hui, and Fangfang 
Wang. “Grading of Metacarpophalangeal Rheumatoid Arthritis on Ultrasound Images 
Using Machine Learning Algorithms.” IEEE Access 8 (2020): 67137–67146. https://doi.
org/10.1109/ACCESS.2020.2982027.

	 [59]	Deshmukh, Atharva, Disha Sunil Patil, Gulshan Soni, and Amit Kumar Tyagi. “Cyber 
Security: New Realities for Industry 4.0 and Society 5.0.” In Handbook of Research on 
Quantum Computing for Smart Environments, pp. 299–325. IGI Global, 2023. https://
doi.org/10.4018/978-1-6684-6697-1.ch017.

https://doi.org/10.4018/978-1-6684-6697-1.ch017
https://doi.org/10.4018/978-1-6684-6697-1.ch017
https://doi.org/10.1109/ACCESS.2020.2982027
https://doi.org/10.1016/j.matpr.2022.01.071
https://doi.org/10.1007/978-981-16-6542-4_14
https://doi.org/10.1007/s10278-021-00564-w
https://doi.org/10.1007/s10278-021-00564-w
https://doi.org/10.1093/rap/rkz047
https://doi.org/10.1016/j.compeleceng.2019.08.003
https://doi.org/10.1016/j.matpr.2022.01.094
https://doi.org/10.1016/j.compeleceng.2019.08.003
https://doi.org/10.1093/rap/rkz047
https://doi.org/10.1007/978-981-16-6542-4_14
https://doi.org/10.1016/j.matpr.2022.01.071
https://doi.org/10.1109/ACCESS.2020.2982027


135DOI: 10.1201/9781003467281-9

Medical Imaging 
Analysis Techniques
Advances, Challenges, 
and Future Directions

Rakesh Kumar, Mukesh Kumar, Uma Rani, 
Sarika Madavi, and Shilpa Suhag

8.1  INTRODUCTION

8.1.1 A pplications of Medical Imaging Analysis

There are a number of applications for medical imaging analysis, which involves 
the use of advanced technologies and algorithms to interpret and extract meaningful 
information from medical images. First, regarding diagnosis and treatment plan-
ning, medical imaging analysis plays a crucial role in diagnosing various diseases 
and conditions. By evaluating images from X-ray, CT scan, MRI, ultrasound, PET, 
and other modalities, healthcare professionals can identify abnormalities, tumors, 
fractures, and other anomalies from images. Accurate diagnosis aids in developing 
appropriate treatment plans and interventions.

Medical imaging analysis also aids in tracking illness progress and therapy 
efficacy. Healthcare providers can notice changes in tumor size, evaluate therapy 
response, and make informed judgments about treatment modifications by evaluat-
ing consecutive images. This data is useful for modifying treatment strategies, fore-
casting patient outcomes, and maximizing healthcare resources [1].

Finally, regarding early detection and prevention, medical imaging analysis 
enables the detection of diseases and conditions at early stages when symptoms may 
not be evident. Early detection is particularly critical for diseases like cancer, cardio-
vascular disorders, and neurological conditions because it can result in more effec-
tive treatment alternatives and improved outcomes for patients.

Secondarily, image analysis supports quality control in manufacturing, ensur-
ing the quality and reliability of products. It helps with detecting defects, measur-
ing dimensions, and assessing product consistency. Accurate and efficient analysis 
reduces waste, improves efficiency, and maintains high-quality standards, leading to 
cost savings and customer satisfaction.

Image analysis is also crucial for surveillance and security. It aids in identify-
ing individuals, detecting suspicious activities, and monitoring public spaces. By 
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accurately analyzing images in real time, it helps prevent and investigate criminal 
activities, ensuring public safety.

8.2  IMAGING MODALITIES

Imaging modalities refer to different techniques and technologies utilized in creat-
ing visual representations of components and functions inside the human body, as 
well as other items of interest. These modalities are critical in medical diagnosis, 
research, and other disciplines of science. Examples of commonly used medical 
imaging techniques include (Table 8.1 and Figure 8.2):

X-rays: Ionizing radiation is used in X-ray to image the body’s interior struc-
tures. It is frequently used to view bones, identify cracks, and diagnose 
illnesses such as pneumonia [2].

Computed tomography: Full comprehensive views of the body are provided 
by CT scans, which combine X-ray images taken from multiple angles. CT 
scans are especially beneficial for imaging organs, blood vessels, and soft 
tissues because they provide a more comprehensive view than typical X-rays.

Magnetic resonance imaging: MRI creates detailed pictures of tissues, organs, 
and structures inside the body by using a high magnetic field and radio waves.

Ultrasounds: Ultrasound imaging creates real-time images of the body’s 
architecture by using high-frequency sound waves. It is commonly used in 
obstetrics and gynecology for pregnancy monitoring, but it is also used to 
image organs, blood arteries, and other bodily structures.

Positron emission tomography: This method is used to show the processes 
of metabolism and organ function at the cellular level. PET scans are fre-
quently utilized in cancer treatment, heart disease, and neuroscience.

Single-photon emission computed tomography: SPECT imaging is like PET 
imaging, except it employs different radioactive tracers. In the field of 
nuclear medicine, it is widely used to evaluate organ function, blood flow, 
and identify irregularities.

FIGURE 8.1  Flow diagram of medical imaging.
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8.3  IMAGE DENOISING

Image reduction (denoising) is the process of removing noise from an image to 
improve the quality and clarity. Noise in images can occur due to many factors, 
like sensor limitations, dim light conditions, compression artifacts, or transmission 
errors. It is techniques that aim to minimize its impact of noise while preserving 
important image details.

Different filter types are some of the common methods of image denoising. For 
instance, median filtering is a simple noise reduction approach in which each pixel is 
replaced with the median value of its nearby pixels; reducing isolated bright or dark 
pixels that arise in an image at random is a common problem that can be effectively 
addressed by median filtering. Gaussian filters are also widely used for denoising; 
using a Gaussian kernel, they convolve the image to reduce noise while maintaining 
edges and fine features. You can change the degree of smoothing by changing the 
Gaussian standard deviation. A Gaussian filter blurs visual regions and minimizes 
noise or high-frequency elements; when the sized symmetric kernel (DIP version of 

FIGURE 8.2  Imaging techniques.

TABLE 8.1
Medical Imaging Methods

x-Ray CT Scan MRI Ultrasound

Radiation types Ionized Ionized Non-ionized Ionized

Radiation used X-rays X-rays Electromagnetic radio waves High-frequency sound waves

Cost Medium High High Low
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a matrix) that is passed through each pixel in the region of interest (ROI) to produce 
the desired effect then the filter is constructed. And the Wiener filter is a statistical 
filter that estimates the original image by reducing the average square error between 
the original and filtered pictures; it assumes a known noise model and uses a fre-
quency–domain representation of the image and noise.

8.4  SEGMENTATION

Segmentation in image processing refers to dividing a picture into many parts or por-
tions to create a simpler representation and extract useful information. Segmentation 
is a critical stage in various computer vision applications including object detection, 
picture analysis, and scene comprehension. A common segmentation technique is 
thresholding, which involves determining the threshold value and identifying pixels 
or areas according to their intensity levels. Pixels that vary from the threshold are 
allocated to distinct segments. Thresholding is simple and effective for segmenting 
images with distinct intensity differences, such as binary images or images with 
well-defined foregrounds and backgrounds.

Another common segmentation method is clustering. Clustering algorithms group 
similar pixels based on feature similarity. Fuzzy C-means and k-means clustering 
divide pixels into clusters that each represent a separate segment. Clustering can be 
based on color, texture, or other feature descriptors [3]. Finally, DL-based segmenta-
tion is a computer vision technology that uses deep neural networks segment pictures 
(Figure 8.3). With the introduction of CNNs [4], it is now possible to segment data 
using deep learning, Deep learning for picture segmentation have grown in popu-
larity, often using fully convolutional networks and U-Net. These models learn to 
predict pixel-wise segmentation masks by training on large, labeled datasets [5].

8.5  FEATURE EXTRACTION

Extracting significant features from medical pictures is critical in many medical 
imaging applications, which include illness diagnosis, therapy planning, and image-
guided therapies. Different methods of extraction focus on different features.

For instance, intensity-based features capture pixel or voxel intensity. These fea-
tures include statistics such as mean, standard deviation, minimum, maximum, and 

FIGURE 8.3  Deep learning segmentation techniques.
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percentile values calculated within ROIs or across the entire image. To record spatial 
fluctuations in intensity and intensity histograms, techniques such as gray-level co-
occurrence matrices (GLCMs) or local binary patterns (LBPs) can be utilized [1, 6]. 
Shape-based features describe the geometrical characteristics of structures within 
medical images, including volume, surface area, diameter, eccentricity, compact-
ness, and circularity. Shape descriptors like Zernike moments, Fourier descriptors, 
or contour-based descriptors can be employed to capture specific shape properties.

Texture-based features are the patterns, variations, and groupings of the intensity 
of pixels or colors in an image. They capture the spatial arrangements and patterns of 
pixel intensities within an image. There are different methods for analyzing textures 
including GLCM, GLRLM, GLSZM, and wavelet transforms. These techniques 
extract features that are associated with the texture characteristics of various tis-
sues or structures. Finally, statistical features capture statistical properties of image 
regions or structures. Calculating statistical features is an essential aspect of data 
analysis. These features include mean, standard deviation, skewness, kurtosis, corre-
lation, entropy, and fractal dimensions. Such features can be derived from intensity, 
shape, or texture representations.

8.6 � TRADITIONAL MACHINE LEARNING 
CLASSIFICATION METHODS

Classification using traditional machine learning (ML) methods involves teaching 
models to recognize patterns based on labeled data, enabling them to make accurate 
predictions on new data sets [7]. There are now a number of common traditional ML 
algorithms used for classification. For instance, logistic regression is a linear model 
that’s frequently used for binary classification. It forecasts the likelihood of input 
being part of a specific class based on the input features. One-vs.-rest or SoftMax 
regression handle multiclass classification [8, 9, 10].

Support vector machine (SVM) is a widely used multiclass and binary classifica-
tion algorithm. It identifies an ideal hyperplane that effectively distinguishes the 
classes in the feature space. With the use of various kernel functions, SVM can 
address both linearly and nonlinearly separable data. SVM is used for regression and 
classification analysis and is especially popular for classification; it is well-known for 
its capacity to process high-dimensional data and recognize clear decision boundar-
ies [11].

Decision trees recursively split the feature space based on different features and 
thresholds. They form a hierarchical structure of if–else conditions to classify the 
data and are excellent strategies for handling data. Decision trees are easy to under-
stand, can work with both categorical and continuous data, and are straightforward 
to interpret. Random forest and gradient boosting build multiple decision trees to 
improve classification performance.

Next, naïve Bayes is a probabilistic classifier that assumes that the characteristics 
are conditionally independent based on the class label; this is a naïve assumption, but 
it simplifies computation. Naïve Bayes is particularly efficient and works well with 
high-dimensional feature spaces; it is commonly used for text classification tasks. 
Finally, using nonparametric methodology, k-nearest neighbors (KNN) sorts new 
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data points by considering the majority decision. Within the feature space, KNN 
doesn’t rely on any explicit assumptions about the data’s underlying distribution. It 
can effectively manage both binary and multiclass classification [4].

8.7  IMAGE REGISTRATION AND ALIGNMENT

Image registration and alignment are fundamental processes in computer vision and 
medical imaging that involve aligning multiple images spatially or geometrically. 
The goal is to bring different images into a common coordinate system, enabling 
accurate comparison, fusion, or analysis of the images. Techniques for aligning and 
registering medical images are point based and image based.

Point-based registration methods involve identifying and aligning correspond-
ing points or landmarks in the images; these points can be manually annotated or 
automatically detected using feature detectors. Thin-plate splines and the iterative 
closest point can be used to estimate the transformation that best aligns the points 
in the images. Image-based methods utilize the entire image content to estimate the 
transformation between images. These methods involve extracting image descrip-
tors, such as scale-invariant feature descriptors (SIFT, SURF), and matching them 
between the images. Random sample consensus is often used to robustly estimate the 
transformation based on the matched image descriptors.

8.8  IMAGE RECONSTRUCTION AND RESTORATION

Image reconstruction and restoration are important tasks in image processing that 
aim to recover or improve the quality of images. There are a number of common 
reconstruction techniques in computed tomography. For instance, interpolation is 
used for image reconstruction when there is missing or sparse data. It estimates the 
values of the missing pixels based on the known neighboring pixels. Techniques like 
the nearest neighbor, bilinear interpolation, or bicubic interpolation are commonly 
used for filling in missing pixels [1].

Filter-based methods involve applying filters or convolutional operations to 
enhance or restore image details. For instance, one way to reduce noise in an image 
while still preserving edges and fine details is median filtering; this process involves 
replacing every pixel that has the median value of its surrounding neighborhood. 
Gaussian filtering applies a weighted average of neighboring pixels to smooth the 
image and reduce noise using a Gaussian kernel with a specified standard deviation. 
Wiener filtering improves blurry and additive noise-damaged images; the original 
picture is estimated by reducing the mean square error between the estimated and 
observed images.

Total variation regularization is used for denoising and image reconstruction; it 
minimizes the total variation of the image, which promotes piecewise smoothness 
and preserves edges. Iterative reconstruction seeks to iteratively refine picture recon-
struction by comparing obtained raw data with estimated data based on the current 
image estimate. And super-resolution strives to improve the resolution and detail of 
low-resolution photographs. To estimate high-resolution details, these methods use 
several low-resolution photos of the same scene or deep learning-based approaches [3].
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8.9  QUANTIFYING MEDICAL IMAGING DATA

When analyzing medical imaging data, quantification involves extracting numeric 
measurements and analyzing the data gathered from a range of modalities for medi-
cal imaging, including X-ray, CT, MRI, PET, and ultrasound. The aim is to provide 
objective and quantitative information about anatomical structures, physiological 
functions, and pathological conditions present in the images.

A common quantification method with medical imaging data is texture analysis, 
which involves quantifying the spatial distribution and patterns of pixel intensities 
within an image. Texture analysis provides information about tissue heterogeneity, 
such as the presence of tumors or the degree of tissue fibrosis. Texture features can 
be extracted using statistical measures, co-occurrence matrices, wavelet transforms, 
or other methods.

Functional analysis focuses on extracting quantitative information about physi-
ological functions from medical imaging data, for example myocardial perfusion, 
regional contractility, or tissue viability in cardiac imaging. Functional connectivity, 
regional cerebral blood flow, and metabolic activity can be quantified in neuroimag-
ing. As discussed, segmentation is the process of detecting and outlining sections of 
interest within a picture; it entails isolating anatomical structures or lesions from the 
surrounding or background tissues. Depending on the task’s complexity and avail-
able resources, manual or automated algorithms can be utilized for segmentation.

Finally, kinetic modeling is widely employed in dynamic imaging techniques like 
PET and dynamic contrast-enhanced MRI. It involves fitting mathematical models 
to time-varying data to estimate parameters related to physiological processes. For 
example, in oncology, kinetic modeling is used to determine the uptake and clear-
ance of a radiotracer within a tumor, providing information about its metabolism and 
aggressiveness [12].

8.10  DATA SCARCITY AND PRIVACY

Data from medical imaging, such as CT scans, X-rays, and MRIs, are essential diag-
nostic tools in healthcare and are invaluable for research, algorithm development, 
and training of machine learning models. However, acquiring large, diverse, and 
annotated datasets can be difficult for various reasons [13], often limited access. 
Medical imaging data is often stored in healthcare institutions or research centers, 
making it challenging to collect data from multiple sources. Access restrictions, data 
ownership, and institutional policies can hinder the availability of data for research 
purposes. Additionally, sharing medical imaging data across institutions or between 
researchers can be complex. Legal, ethical, and regulatory considerations such as 
patient consent, data protection laws, and potential privacy risks can impede data 
sharing.

Privacy is also an obvious concern. Medical imaging data contains sensitive and 
personally identifiable information, frequently called protected health information 
(PHI). This is any identifiable health information that a covered business or its busi-
ness associate stores or transfers, regardless of format. PHI is a crucial concept in 
healthcare privacy and security, and it is governed by stringent legislation in many 
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countries, most notably the Healthcare Insurance Portability and Accountability Act 
in the United States. Medical images often contain PHI, including patient demo-
graphics, medical history, and specific details about their conditions; unauthor-
ized access, misuse, or improper handling of this information can lead to privacy 
breaches and potential harm to patients [14]. One technique for ensuring privacy is 
de-identifying the data, but anonymizing or de-identifying medical imaging data 
while retaining its relevance for research reasons is difficult. Removing direct iden-
tifiers like names or social security numbers may not be enough to preserve patient 
privacy because image data may still contain indirect identifiers or distinctive quali-
ties that might re-identify individuals.

8.11  CONCLUSION

With this chapter, we have aimed to provide researchers, practitioners, and health-
care professionals with a comprehensive overview of the advancements, challenges, 
and future directions in medical imaging analysis. By our addressing these issues, 
the field of medical imaging can continue to advance and contribute to improved 
patient care and medical research and understanding of the most recent cutting-edge 
approaches. Medical imaging is important in many areas of healthcare, particularly 
evaluation, planning of treatment, and research. With the recent introduction of 
sophisticated modalities of imaging, image analysis techniques, and machine learn-
ing algorithms, medical imaging has seen considerable breakthroughs. We hope that 
this chapter will inspire new research ideas and foster further advancements in this 
critical field of healthcare.
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9.1  INTRODUCTION

Increasing evidence indicates that interventions grounded in well-defined theoretical 
frameworks are more effective than those without a theoretical basis. Additionally, 
strategies that integrate multiple theories and concepts often yield stronger out-
comes. Theories that become prominent within a field influence its growth, out-
line its practice boundaries, and shape the education and training of professionals. 
(Office of Behavioural and Social Sciences Research, Department of Health and 
Human Services, and National Institute of Health n.d.).

Social and behavior change (SBC) theories are frameworks for comprehensively 
addressing and influencing health-related behaviors at individual, community, and 
societal levels. SBC is differentiated from older behavioral modification models by 
incorporating socio-ecological thinking. Instead of just increasing awareness, it 
places a strong emphasis on promoting collective action and involving communities 
in discourse. (Health Protection Agency, Ministry of Health Republic of Maldives, 
and UNICEF 2019)

One of the most used models in SBC is the transtheoretical model of change 
(TTM), which presents a dynamic approach to understanding how individuals prog-
ress through various stages of behavior change models, which states that changing 
a behavior is a process and different people are in different stages of change and 
readiness. In this process, people pass through five stages: precontemplation, con-
templation, preparation, action, and maintenance. Unlike static models, the TTM 
acknowledges that behavior change is not linear; individuals move through stages, 
regress, and progress at varying rates. There are three variables that control the flow 
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between different stages and the amount of time required for change: the process of 
change (PC), decisional balance (DB), and self-efficiency (SE) (Rahimi et al. 2019).

Model comparison is a technique that tries to estimate/identify the most suited 
model out of the array of possible models best relates/illustrates the behavior-related 
data, as a method to ascertain which processes are more tending to trigger the 
respective behavior. This is more applicable in situations when the diverse frame-
works make comparable qualitative projections but differ quantitatively (Wilson and 
Collins 2019). Through this chapter an attempt is made to use the TTM as a stan-
dardized framework to develop a research assessment tool to gauge the students’ 
readiness for behavior change with respect to behaviors related to physical health 
and well-being.

9.2  REVIEW OF LITERATURE

9.2.1  Health and Holistic Well-Being

According to the World Health Organization (WHO), health is “a state of complete 
physical, mental, and social well-being and not merely the absence of disease or 
infirmity.” Health development embodies all the components that are essential for 
the attainment of such a state of being (“Health and Well-Being” n.d.).

The recent rise in sudden cardiac arrest (SCA) among young Indians, particu-
larly those in their 30s and 40s, has raised serious concerns within the medical 
community. In a study in The Lancet Digital Health, Reinier et al. (2023) reported 
a 20% increase in SCA, a trend that has been further exacerbated by the lingering 
effects of the COVID-19 pandemic. This alarming pattern points to an urgent pub-
lic health crisis. Dr. Kumar Narayanan, from Medicover Hospitals in Hyderabad, 
in collaboration with 30 international experts, conducted a pivotal study and esti-
mated that 6 to 8 lakh Indians die from SCA annually, with a significant proportion 
of these fatalities occurring in individuals under the age of 50. The study under-
scores a major gap in public health awareness: There is limited knowledge about 
SCA including its preventable risk factors. Additionally, the expert group found 
that only 2% of the Indian population is familiar with cardiopulmonary resuscita-
tion, a life-saving technique crucial for improving survival rates. This highlights 
the pressing need for more robust educational initiatives and widespread training 
in basic emergency response measures to combat this escalating health challenge. 
Immediate action is required to enhance awareness, promote prevention strategies, 
and equip the population with essential life-saving skills to address this growing 
concern Reinier et al. (2023).

9.2.2 B ehavioral Insights and Health

The Organization for Economic Co-operation and Development notes that nudges 
have evolved from a trend to a mainstream strategy widely adopted across indus-
tries and policies. Governments increasingly use behavioral insights to complement 
traditional regulations, offering solutions to decision-making that may otherwise go 
against individuals’ interests. (Forberger et al. 2019).
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According to Singhal et al. (2022), deep learning is widely applied in a variety of 
sectors including for developing innovative pharmaceuticals and clinical decision-
making procedures, as well as discovering new approaches to medicine develop-
ment. Forberger et al. (2019) reviewed 35 papers using choice architecture or nudges 
to promote physical activity and found that most studies focused on interventions at 
locations like airports and shopping centers; a few explored online therapy, but there 
was a lack of research addressing population-level lifestyle changes. The authors 
underscore the potential of nudges but highlights critical research gaps, calling for 
more theory-based research, feasibility testing, and strategies for large-scale imple-
mentation (Forberger et al. 2019).

Investigators on a cross-sectional study conducted in Jordan between 2021 and 
2022 assessed the stages of change for seven healthy-eating behaviors and two life-
style behaviors pertaining to systolic blood pressure (BP) management among 1109 
hypertensive patients. While a significant number of participants stayed in the main-
tenance stage for healthy dietary behaviors—such as consuming grains, fruits, veg-
etables, lean meats, and low-fat dairy—many remained in the pre-action stages for 
quitting smoking, engaging in regular physical exercise, and reducing sweets and 
added sugars. These findings highlighted a critical gap between dietary adherence 
and the adoption of key lifestyle changes for BP management (Elsahoryi et al. 2024).

The authors also identified significant associations between the patients’ stages of 
change and age, income, education level, disease duration, and access to nutritional 
consultation (p < 0.01). Notably, older and better-educated patients showed greater 
adherence to healthy behaviors, while those with lower incomes and less access to 
nutrition counseling were more likely to be in the pre-action stage for certain behav-
iors. These results suggest a need for targeted interventions, including counseling 
and education, to address lifestyle behaviors that are critical for improving BP con-
trol among hypertensive patients. The findings underscore the importance of sup-
porting patients through tailored interventions that align with their stage of behavior 
change (Elsahoryi et al. 2024).

9.2.3 SBC  Models

SBC models are grounded in behavioral science theories that help explain or pre-
dict behaviors by illustrating the relationships between various variables influencing 
them (“What Is Social and Behaviour Change Communication” n.d.). These theo-
ries provide a methodical framework for comprehending the reasons behind peo-
ple’s actions, which aids in creating treatments that specifically address the drivers 
of behavior. They take into account ideas from the social, cultural, and economic 
spheres in recognition of the fact that a variety of factors interact to impact behavior 
change (Urban Adolescent SRH SBCC 2015).

SBC models are fundamental because they provide a planned and evidence-
driven strategy for designing public health interventions. Interventions grounded in 
theory have proved to be more effective than those without a theoretical grounding. 
Models such as the socioecological model take into account broader socioecologi-
cal components that impact health behaviors, extending beyond individual behav-
iors by including environmental, organizational, and interpersonal aspects. This 
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“upstream” approach ensures that interventions not only focus on individuals but 
also address the social and environmental factors that influence behaviors (Office 
of Behavioural and Social Sciences Research, Department of Health and Human 
Services, and National Institute of Health n.d.).

9.2.3.1  Stages of Change/The TTM
The transtheoretical model, commonly referred to as the stages of change, postulates 
that behavior change takes places in stages determined by individual motivation and 
change readiness. In one-on-one situations, counselors can select resources accord-
ing to the client’s stage of change. Throughout the precontemplation and contempla-
tion stages, the primary informational themes are facts, the risks associated with the 
current behavior, and the benefits of changing the behavior. The therapy will focus 
on opportunities for behavior modification and how to seize them while planning 
and acting (Urban Adolescent SRH SBCC 2015). Under the TTM, change takes 
place in five stages, although patients can move back and forth between stages. In 
the precontemplation stage, the client has no immediate plans to alter behavior. In 
contemplation, the client is aware of the problem and is thoughtfully weighing their 
options, but they have not yet made a decision to take action. In preparation, the cli-
ent intends to immediately take an action. In the action stage, the client initiates the 
behavior. And in the maintenance stage, the client attempts to maintain the behav-
ior. Some SBCC professionals include a sixth level, advocacy. During the advocacy 
phase, they talk about continuing the particular behavior as well as highlighting its 
benefits (Urban Adolescent SRH SBCC 2015).

The TTM argues that behavior change is a process and that people differ in 
their stages of readiness for change. This process involves five stages that people go 
through in total: precontemplation, contemplation, preparation, action, and mainte-
nance. Additionally, one can return to any earlier iteration of this pattern. The three 
variables that govern the flow between phases and the duration of change are the 
process of change, decisional balance, and self-efficiency. Because the TTM is both 
time- and cost-effective, it has been used in preventative therapies for a number of 
cancers and chronic disorders including diabetes (Rahimi et al. 2019).

Prochaska and Velicer (1997) assert that the stage construct’s prominence stems 
from its depiction of a chronological dimension. Change symbolizes activities that take 
place over time, but peculiarly, no central idea expressing time was present in any of 
the major theories of treatment. Changes in behavior were frequently seen as events, 
such as giving up alcohol, cigarettes, or overindulging in food. According to the trans-
theoretical model, change is a process that involves moving through six stages (Figure 9.1).

Schumann et al. (2005) conducted a longitudinal study in 2005 using the TTM 
to examine 786 individuals who had ever smoked and found that multiple TTM 
parameters significantly affect discrimination in precontemplation and contempla-
tion. This demonstrates the value of the model in anticipating and comprehending 
smoking cessation, validates the TTM hypothesis, and advances our understanding 
of the dynamics of smoking behavior. The TTM clearly offers a useful framework 
for creating behavior modification programs that are both successful and sensitive 
to the unique circumstances and dynamics of each person’s transition to healthier 
behaviors.
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The leading causes of death globally are chronic diseases like diabetes, cancer, 
heart disease, and lung disease and behavioral factors like alcohol consumption, 
diet, exercise habits, smoking, sexual behavior, and preventable injuries. Projections 
indicate that the burden of disease will increase due to increases in noncommuni-
cable diseases, tobacco-related deaths, and HIV/AIDS-related mortality; it is esti-
mated that heart disease, depression, and HIV/AIDS will be the leading causes of 
death globally by 2030. Context-appropriate theories and strategies are necessary 
for effective health education; for example, the health belief model can be used 
to remove barriers to mammography, while the TTM is appropriate for smoking 
cessation programs. Selecting a theoretical framework ought to be determined by 
particular issues, objectives, and methods rather than by popularity. This strategy 
guarantees the focused and efficient implementation of health education theories 
(“Health Behavior and Health Education” n.d.).

9.3  STUDY SIGNIFICANCE: USING TTM IN BEHAVIOR MODELING

Delhi University has a distinct cultural and social environment that offers a unique 
space for studying the holistic well-being of youth. Within this urban environment, 
undergraduate students face a complex array of influences on their health behaviors. 
Academic pressures, peer dynamics, the fast pace of city life, and easy access to both 

FIGURE 9.1  The transtheoretical model of change.
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healthy and unhealthy lifestyle choices create a paradox where students are highly 
aware of health concerns but often lack the resources or motivation to act on this 
awareness. For many, physical well-being takes a backseat to academic achievement, 
social engagements, and time constraints, leading to irregular exercise habits, poor 
dietary choices, and high levels of stress. By integrating the TTM into the study of 
youth well-being, we aimed with this study to model the stages of behavior change 
and provide actionable insights into how desired behaviors—especially those linked 
to physical health—can be achieved and sustained over time.

The goal was to develop tools that not only identify where individuals stand in 
their readiness to change but also guide targeted interventions that nurture holistic 
well-being in a sustainable way. As noncommunicable diseases continue to rise glob-
ally, largely driven by poor lifestyle choices, the importance of fostering positive 
behavior patterns early in life cannot be overstated. The physical dimension of well-
being, including regular exercise, proper nutrition, and stress management, acts as a 
foundation upon which emotional and social well-being thrive.

Understanding how students in Delhi University approach their physical well-
being requires a deep dive into the broader social and cultural fabric that shapes 
their daily lives. While educational institutions offer a structured environment, the 
autonomy students experience also means they are exposed to lifestyle choices that 
can hinder their well-being. The current research context underscores the importance 
of modeling behavior change in this demographic, as these formative years are criti-
cal for establishing long-term health patterns. By focusing on physical well-being as a 
gateway to holistic health, we aimed with the study for this chapter to explore how stu-
dents navigate the complexities of urban life while striving to maintain healthy habits.

9.4  FOCUS OF THE STUDY

Despite the growing awareness of health and well-being among youth, the gap between 
knowledge and action remains substantial. We sought with this study to address the 
challenges that young individuals face in adopting and maintaining desired health 
behaviors, particularly those related to physical well-being. Leveraging the TTM 
as a framework, we model the behavior change process, highlighting the stages of 
progress and the factors that either accelerate or impede this progression.

A significant part of this study involves the development and rigorous testing 
of tools designed to assess students’ readiness for behavior change. First, we con-
ducted a pilot study to pretest these tools, ensuring their accuracy and effectiveness 
in capturing the stages of behavior change as outlined by the TTM. This pretesting 
phase was crucial, as it provided valuable insights that allowed for refining the tools, 
optimizing their reliability and sensitivity to detect various stages of change within 
the student population.

Following the refinement, we conducted the actual study on a sample of 100 under-
graduate participants from Delhi University. These participants represented a diverse 
cross-section of the student body, providing a robust dataset for examining how young 
adults navigate the transition toward desired health behaviors. Using the TTM as a 
framework enabled us to map out students’ progression through the stages of change, 
from precontemplation to maintenance. We tested the efficacy of the developed tools 
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and explored the factors that either supported or hindered the students’ progression 
toward healthier behaviors. This data-driven approach offers key insights into how 
well-being interventions can be tailored to meet the specific needs of youth within 
an educational setting, fostering sustained improvements in health behaviors. We 
demonstrate how these refined tools provide predictive insights into health behaviors, 
helping identify students’ readiness to engage in healthier lifestyle choices.

By modeling these stages of behavior change, we offers a nuanced understand-
ing of how young individuals can be guided toward adopting and sustaining desired 
behaviors, particularly in health. The objective of this research is to offer evidence-
based recommendations for interventions that are embedded in educational envi-
ronments and tailored to the specific needs of youth. These interventions can play 
a transformative role in promoting holistic well-being and advancing public health 
outcomes, contributing to the realization of global health targets such as the UN’s 
Sustainable Development Goal 3: Good Health and Well-Being.

9.5  METHODOLOGY

9.5.1 S tudy Design

The present study was a descriptive study aimed at understanding the health-related 
behavior patterns among third-year undergraduate students at Delhi University/New 
Capital Region. The study captured a snapshot of students’ holistic well-being at 
a specific point in time and particularly their physical well-being. The descriptive 
design allows for a comprehensive exploration of various well-being dimensions 
without requiring longitudinal data collection.

9.5.2 P articipants

The sample population for this study consisted of 100 undergraduate students in 
their third (final) year with 50 students from each of two women-only institutions, 
College 1 (Lady Irwin College) and College 2 (Miranda House). We used snowball 
sampling, where initial participants referred others who met the study’s inclusion 
criteria: third-year undergraduate students with no existing health concerns.

9.5.3 I nstruments

The primary data collection tool was a structured questionnaire designed to assess 
three key dimensions of holistic well-being: physical, emotional, and social; in this 
chapter, we highlight well-being. The questionnaire included statements rated on 
Likert scales to measure the frequency and intensity of behaviors along with qualita-
tive, open-ended questions for more nuanced insights. For instance, for the question 
“How do you perceive the importance of brisk walking for maintaining good physi-
cal health?”, the response options were

a)	 I do not think it is important.
b)	 I have been thinking about it but haven’t actively considered making it a habit.
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c)	 It has just struck me that yes, it is important, so I’m looking for a walking 
partner to start/I’m thinking/making preparations.

d)	 I have lately started brisk walking, and it has been 1–6 months.
e)	 Brisk walking is a part of my routine; it has been over 6 months that I have 

been consistently brisk walking.

The response options correspond to the stages of change: a) represents precontempla-
tion; b) contemplation; c) preparation; d) action; and e) maintenance. Additionally, 
to validate the study questionnaire, professionals in SBC and health communication 
reviewed the questionnaire to ensure that the tool was comprehensive, clear, and 
appropriately aligned with the study’s objectives. Their feedback was instrumental 
in refining the questionnaire for clarity and relevance, enhancing the overall validity 
of the research tool.

9.5.4 P ilot Study

As we mentioned, we conducted a pilot study to refine the questionnaire and ensure 
its validity and reliability. The pretest involved administering the draft question-
naire to a sample of 15 master’s students from the Department of Development 
Communication and Extension at Lady Irwin College. Feedback from the pretest 
participants led to minor revisions, primarily linguistic adjustments, that enhanced 
the clarity of the questions. This step, along with expert validation, ensured that 
the final tool was well-suited for the target population and provided reliable 
measurements.

9.5.5  Data Collection and Analysis

We collected the study data from an online questionnaire. Participants were invited 
to complete the questionnaire voluntarily after providing informed consent. The sur-
vey method allowed for a broad reach and efficient data collection from students 
across multiple institutions in Delhi. Data analysis included a quantitative assess-
ment of stage progression. We analyzed the quantitative data according to frequen-
cies and percentages to summarize the patterns in health behaviors. The responses 
were coded, and the data were organized into a coding sheet for analysis. Graphs and 
charts were plotted to visualize the different stages of behavior change as described 
by the TTM for the respondents.

9.6  RESULTS AND DISCUSSION

9.6.1 S tages of Change: 30 Minutes of Physical Exercise Daily

Thirty minutes of brisk walking or exercise is a recommended health behavior for 
maintaining physical well-being; some form of exercise daily is essential to ensure a 
healthy and a fit body. Figure 9.2 graphically displays the engagement levels of stu-
dents from College 1 and College 2 across the stages of behavioral change for daily 
physical exercise.
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Figure 9.2 indicates that both colleges showed minimal student representation in 
the precontemplation stage (3% combined), indicating widespread awareness of the 
importance of exercise. In the contemplation stage, 22% of students from both col-
leges were thinking about exercising but hadn’t started. The trends shown in the 
figure highlight the need for targeted support at College 1 to enhance the transition 
from planning to action and to maintain long-term exercise habits.

9.6.2 S tages of Change: Consuming a Balanced Diet

Consuming a balanced diet from five diverse food groups is a recommended health 
behavior for maintaining physical well-being. A balance of proteins, carbohydrates, 
fruits, vegetables, fats, and sugars is essential for a fit, healthy body. Figure  9.3 
graphically displays the students’ preparedness for this recommended health 
behavior.

The figure demonstrates high dietary awareness across both groups. Only 4% of 
students were in the precontemplation stage, showing widespread recognition of the 

FIGURE  9.2  Respondents’ stages of change: 30 minutes of physical exercise daily. PC: 
precontemplation, C: contemplation, P: preparation, A: action, M: maintenance.
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importance of a balanced diet. College 2 had a higher percentage of students in 
the contemplation stage (22% vs. 16% at College 1), indicating greater awareness of 
dietary deficiencies, but College 2 led in the maintenance stage with 38% of respon-
dents sustaining their dietary changes compared versus 22% at College 1. That is, 
College 1 students were more proactive in initiating changes, while College 2 stu-
dents demonstrated better long-term commitment to maintaining healthy habits. The 
findings underscore the need for interventions tailored to support both the adoption 
and maintenance of balanced diets at each college.

9.6.3 S tages of Change: Nutritious Diet

Avoiding junk food and consuming a nutritious diet is a recommended health behav-
ior for maintaining physical well-being, including consuming nutrient-rich foods 
and eliminating ultraprocessed foods is essential to ensure a healthy and a fit body. 
Figure 9.4 graphically displays the students’ responses about a nutritious diet.

FIGURE 9.3  Respondents’ stages of change: consuming a balanced diet. PC: precontempla-
tion, C: contemplation, P: preparation, A: action, M: maintenance.
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Figure  9.4 reveals some differences in health awareness and engagement. 
College 1 has no students in the precontemplation stage, indicating full awareness 
of the benefits of a nutritious diet, but both colleges show strong commitment to 
improving nutrition, particularly in the preparation and action stages. The find-
ings generally highlight opportunities to enhance health promotion efforts in both 
institutions.

9.6.4 S tages of Change: Regular Health Check-Ups

Finally, regular health checkups are an important aspect of being physically fit. The 
recommendation in India is that young adults get their blood checked at least once 
every six months (see Figure 9.5).

Figure 9.5 reflects a few notable differences between Colleges 1 and 2. The con-
templation ratings of 40% of students considering regular check-ups at College 1 
compared with 42% at College 2, reflecting strong awareness in both colleges, but 

FIGURE 9.4  Stages of change: nutritious diet: PC: precontemplation, C: contemplation, P: 
preparation, A: action, M: maintenance.
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FIGURE 9.5  Stages of change: regular health check-ups. PC: precontemplation, C: contem-
plation, P: preparation, A: action, M: maintenance.

32% of students at College 1 were in the preparation stage compared with only 18% 
at College 2.

9.7  CONCLUSION

With this study, we have clearly articulated how behavior modeling can be used to 
predict the stages of behavior change that given individuals are in at given times 
of measurement. We highlighted the transtheoretical model of change. As a basic 
premise, the TTM is a preestablished model of behavior change that was specifi-
cally integrated into a research instrument to identify respondents’ stages of change 
with respect to their physical well-being. The findings were instrumental in assess-
ing respondents’ stages of change pertaining to physical well-being behaviors and 
thereby identifying the factors that enabled or hindered them to stay in a specific 
stage. Identifying the stage of change is crucial and in fact, a prerequisite for devel-
oping targeted behavior change interventions.
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10.1  INTRODUCTION

Reading and understanding medical reports can be challenging because of the lack 
of specialized medical knowledge among the general public, especially due to more 
use of high-level medical terminology. This obstacle can hinder effective commu-
nication between providers and patients that can lead to misunderstandings and 
nonoptimal healthcare outcomes. Researchers have addressed both technical and 
nontechnical problems including the use of high-level medical terms; the lack of 
domain-specific knowledge has led to misunderstandings [1, 2].

Processing and interpreting medical reports pose multiple technical challenges. 
Traditional machine learning (ML) algorithms require training datasets including 
medical dictionaries that must be regularly updated to keep up with domain advance-
ments. These datasets also demand significant storage space, and the response time 
for decoding can be slow and inconsistent depending on the terminology required to 
decode. In this chapter, we propose an LLM joined with OCR to decode prescrip-
tions into a general-purpose language while optimizing space, time, and cost. By 
proposing the use of LLMs, we aim to eradicate the use of traditional dataset-based 
decoding, leading to major space and speed optimization.

We also propose using more efficient cloud-based OCR tools to better understand 
scanned documents and accurately extract text from them. Researchers have long aimed 
to understand clinical notes, and OCR has been the core concept for extracting text from 
scanned documents. The authors of [3] offer a solution that understands the medication 
from a prescription and adds it to the online basket by using OCR to extract the text 
from prescriptions in bounding boxes that contain the text data. Rotation and cropping 
are performed on the image to remove the background. Entities on the image are anno-
tated to help identify and differentiate the clinical note from document accessories. The 
described OCR pipeline could be optimized by implementing it on Microsoft Azure 
Cognitive Service, and it provided 11% accuracy (in contrast with the proposed AWS 
Rekognition) and was $1400 cheaper for processing ten million pictures per month.
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Researchers proposed a model that extracted text from documents using OCR, ana-
lyzed it, and converted it into layman language by comparing the medical terminologies 
from an existing database [1]. There were certain limitations with the model, for instance 
that the database needs to be regularly updated to cope with advancements in the medical 
domain and hence required constant maintenance. Additionally, because of the exten-
sive glossary available in the medical field, the database consumes considerable stor-
age space, which will be costly over time. Next, mapping and comparing medical terms 
with the existing dataset can be time-consuming and lead to slower responses, but the 
proposed solution to this is using LLM models instead of databases. These are prebuilt 
models that provide highly accurate results in a constant processing time.

Similarly, research on understanding handwritten notes using ML provides insight 
into how ML algorithms can be used to analyze handwritten text on a document [4]. 
OCR provides highly accurate sensing capabilities and requires less preprocessing 
than traditional machine learning algorithms. Unsupervised methods have proven 
effective at translating clinical notes relying on bilingual dictionary induction and 
statistical machine translation to decrypt the clinical notes [5]. The authors of [6] 
used a database with ten years of narrative radiology data to analyze clinical reports.

10.2  METHODOLOGY

10.2.1 OCR

Optical character recognition is among the most powerful technologies designed to 
convert several forms of physical documents, such as scanned papers, PDFs, or images 
captured by digital cameras, into editable and searchable digital text. OCR extracts 
printed text using specialized hardware and software, converting images of documents 
into text computers can understand. The scanning machine creates a digital impres-
sion of the document and then translates the image into text by deciphering characters, 
making the information easily accessible, searchable, and storable [16, 17].

10.2.1.1  The Mechanism of OCR
OCR captures an image through a scanner or camera, such as on a cell phone. Once 
the document is scanned, OCR software simplifies the document into a high-contrast 
black-and-white format, distinguishing dark areas as potential characters and light 
areas as backgrounds. The OCR then scans and segments the text into individual 
characters, words, or blocks of text for further processing. OCR recognizes charac-
ters using two major methods: either pattern or feature recognition.

Pattern recognition compares characters in the scanned document with stored font 
examples, enabling the software to identify matches. Feature recognition, on the other 
hand, relies on structural rules that define a character’s shape, such as the number and 
direction of lines and curves. For instance, in feature recognition, the letter “A” is identi-
fied by two diagonal lines meeting at the top and a horizontal crossbar in the middle. 
Once a character is detected, it is then converted to ASCII-an American Standard Code 
for Information Interchange that is generally known. After this, computers can further 
process, store, or manipulate the retrieved text. It is this multistep process that enables 
OCR to correctly interpret and convert printed text into an editable, digital form.
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10.2.1.2  Implementing OCR
OCR can be implemented easily using either on-premises self-built solutions or 
any of the various cloud solutions available. For ease of access and maximizing 
performance, we recommend using any of the available cloud solutions. Table 10.1 
compares the main current cloud solutions available for performing OCR including 
performance scores. For the study for this chapter, we used three different datasets: 
IIIT5K [11], IC13 [12], and SVHN [13].

The table shows that Google Cloud Vision had the most precise reading capabili-
ties, closely followed by Microsoft Azure Cognitive Services. However, the optimal 
model depends on pricing as well, which we show in Table 10.2.

Taking both accuracy and costing into perspective, Microsoft Azure Cognitive 
Services is the optimal solution; it provides high accuracy and is comparable with 
the best-performing Google Cloud Vision while also being cost-effective. Any of 
these solutions can be easily accessed using application programming interfaces 
(APIs) and are available on the cloud. Hence, no extra storage or on premises hard-
ware is required, improving availability of the solution.

10.2.1.3  Evaluating OCR Models
Evaluation is a necessary aspect for verification and analysis of our application. 
There are two major evaluation metrics for our OCR application, character error 
rate (CER) and word error rate (WER) [18, 19]. CER measures the rate of incorrect 
characters that the system picks up. It is calculated as 	

CER = (Incorrect chars/Total chars) × 100

TABLE 10.1
Accuracies of Various OCR Cloud Solutions

IIIT5K IC13 SVHN

Google Cloud Vision [8] 86.8% 87% 61%

Azure Cognitive Services [9] 83.2% 70.6% 44.6%

AWS Rekognition [10] 65.4% 63.6% 36.4%

TABLE 10.2
Costs for OCR Cloud Solutions in USD

1 Million Pictures/
Month

5 Million Pictures/
Month

10 Million Pictures/
Month

Google Cloud Vision $1500 $7500 $10500

Azure Cognitive Services $1000 $3600 $6850

AWS Rekognition $1000 $4200 $8250
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WER measures the rate of incorrect words that the system picks up and is calcu-
lated as

WER = (Incorrect words/Total words) × 100

10.2.2 L arge Language Models

Recent advancements in AI and DL have led to the development of language models 
that are incredibly smart and can understand language almost like humans do. These 
models, known as large language models (LLMs) [20], have become quite popular 
because they’re good at processing and understanding language. They’re trained on 
huge amounts of text data and can generate responses that sound natural and make 
sense when you ask them questions. LLMs can achieve general-purpose language 
generation and other natural language processing tasks such as classification.

10.2.2.1  Architecture and Functionality of LLMs
LLMs are built using many layers of neural networks, and a key component in these 
models is something called transformers. Transformers are special tools that help the 
model understand language better; they work by paying attention to different words in a 
sentence and figuring out how they relate to each other. LLMs learn in two main steps: 
pretraining and fine tuning. In the pretraining step, the model learns from extensive 
amounts of different text sources, like books and articles, to understand how words fit 
together; it gets good at predicting what words might come next in a sentence based on 
the ones before, training to learn how language works and what words often go together. 
When the model reads a sentence, it uses self-attention mechanisms to decide which 
words are important and how they fit together. This helps the model understand the con-
text of the sentence and what it’s trying to say. Then, in the fine-tuning step, the model 
gets more specialized training on specific tasks or topics. This helps it become even bet-
ter at understanding certain types of language or answering certain kinds of questions.

10.2.2.2  Difference Between LLMs and Traditional ML Models
LLMs work differently than traditional ML models; hence, their learning processes, 
language understanding, and flexibility also differ. We compare the two in Table 10.3.

10.2.3 P ossible LLM Options for Our Proposed OCR Application

There are a vast range of specialized and general-purpose open-source and closed-source 
LLMs available on the market; among the many are GPT, ChatGPT, DALL-E, and 
Codex. As creating an LLM from scratch can be a tedious, time-intensive and extremely 
expensive job, we opted to select one of the existing models; for our solution, GPT was 
suitable. Although ChatGPT works on the same principle as GPT, it is programmed to 
interact with the user in a chatbot format; therefore, it was not suitable for our purposes. 
GPT stands for generative pretrained transformer; it is a deep learning large language 
model developed by OpenAI [14] that was pretrained on large amounts of text data and 
is known for generating human-like general purpose responses. We compared different 
GPT models for our purposes, and we summarize the models in Table 10.4.
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Although it seems that GPT-4 would be the most efficient model because it was 
trained on an extraordinary number of parameters, it is slower than its successor, GPT-
3.5 Turbo, one of the most popular and most efficient GPT models. GPT-3.5 Turbo has 
an average throughput of 67 tokens/second, whereas GPT-4’s throughput is 19 tokens/
second. With faster processing times, extensive training parameters, and modest cost, 
it is considered one of the most optimal models. We compare costs in Table 10.5.

10.2.4 T ranslation

English is the universal language in the medical industry. Reports, diagnostics, pre-
scriptions, and all other medical documents are written in English as a standard prac-
tice. However, much if not most of the world’s population does not understand English. 
Translation tools are now available to There are various cloud-based translation solu-
tions available like Google Translate, Amazon Translate on AWS, and Microsoft 
Azure Translator. However, one solution that stands out is DeepL Translator [15].

TABLE 10.3
LLMs vs. Traditional ML Models

Large Language Models Traditional Machine 
Learning Models

Language Understanding Learn language complexities by 
being exposed to a large amount 
of textual material

Depend on preset attributes 
and carefully constructed 
depictions

Learning Process Utilize a variety of unstructured 
text sources for training

Require curated and annotated 
datasets for training

Understanding Words in Sentences Proficient at interpreting context 
with self-attention

Might have trouble without a 
lot of feature engineering

Flexibility Show exceptional flexibility after 
receiving a lot of training

Frequently used for feature 
engineering and task-specific 
fine tuning

TABLE 10.4
The GPT Family of LLMs

Model Launch Date Number of Parameters 
Trained On

Maximum Sequence Length 
(in tokens)

GPT-1 June 2018 117 million 1024

GPT-2 February 2019 1.5 billion 2048

GPT-3 June 2020 175 billion 4096

GPT-4 March 2023 1.76 trillion 8192 (4196 Output-Input each)

GPT-3.5 Turbo November 2023 175 billion 4096
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DeepL is one of the highest rated cloud-based translation tools available. While 
most other tools use ML algorithms to translate the text, DeepL uses deep neural net-
works as its core mechanism. It has a huge database of human-translated sentences 
and text snippets. What makes DeepL stand out is that its database includes a high 
number of idioms and natural speech, making the translations feel more human-
like. It is extremely proficient in translating large and complex sentences easily and 
accurately, which is the core purpose of our proposed solution. DeepL also provides 
its API, which makes it easy to develop the solution programmatically. The cost is 
minimal (Table 10.6).

10.3  THE PROPOSED DOCTOR–PATIENT TRANSLATION MODEL

Here, we introduce a proposed doctor–patient translation model (DPTM) that will 
grant patients easy multilingual access to healthcare documents. Using OCR, the 
DPTM allows users to upload an image of a medical document and then extracts 
the text with high accuracy. The OCR-extracted content undergoes semantic trans-
formation by OpenAI’s GPT-3.5 Turbo through API. The massive language model 
breaks up the text into pieces in the most understandable way possible to the human 
reader. This translated text is further fed through the DeepL translator API to trans-
late it into the target language, making the information accessible to users in their 
language of preference. In response, the translated output is returned to the user, and 
communication across languages will be completed smoothly. The DPTM can be 

TABLE 10.5
Costs of GPT-4 Models Compared with GPT-3.5 Turbo

Model Input Output

GPT-4 $30.00/1 million tokens $60.00/1 million tokens

GPT-4-32K $60.00/1 million tokens $120.00/1 million tokens

GPT-3.5-Turbo-0125 
(16K Context Window)

$0.50/1 million tokens $1.50/1 million tokens

GPT-3.5-Turbo-Instruct 
(4K Context Window)

$1.50/1 million tokens $2.00/1 million tokens

TABLE 10.6
Cost of DeepL API

Tier Limit Pricing

Free 5,00,000 characters/month Free

Business No restrictions $5.49/Month + Usage based 
($25/10,00,000 characters)
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implemented as a web or a chatbot application, compatible with the most frequently 
used messaging platforms such as WhatsApp, Discord, or Telegram to achieve greater 
flexibility and convenience for the user. Figures  10.1 and 10.2 show the DPTM’s 
architecture and workflow, which demonstrates end-to-end—from document upload 
to delivery—multilanguage translation. This process, powered by cutting-edge AI 
tools, aims to bridge language barriers in healthcare for wider access and effective 
attainment of critical medical information.

10.4  RESULTS AND DISCUSSION

Our proposed DPTM aimed to provide people with a better understanding of 
their medical reports by simplifying high-end medical terms into general-purpose 

FIGURE 10.1  Flowchart of DPTM.

FIGURE 10.2  Mechanism of DPTM.
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language using an LLM and OCR. Our experimental results demonstrated that the 
application effectively decoded complex medical terminologies into user-friendly 
language friendly. To test the application, we uploaded a wide range of medical doc-
uments ranging from prescriptions and diagnostic reports to summary lab tests to 
evaluate OCR accuracy, translation fidelity, and user comprehension.

Across document types, our application showed an average OCR accuracy of over 
95%, reflecting overall reliability in reading text from printed and handwritten docu-
ments but with a few minor inconsistencies, mainly with handwritten inputs. The 
model translated medical buzzwords into easily understandable terminology fluently 
and understandably. Approximately 90% of the given medical jargon was simplified, 
and 85% of participants found the decoded explanations drastically clearer than the 
medical text. The DeepL API translated effectively with an overall quality score of 
92% in target languages, with added semantic accuracy.

However, we did identify minor problems in handling regional medical terminol-
ogies. Nearly all, 90%, of test users were satisfied, reporting decreased anxiety and 
increased confidence in their understanding of their medical reports. Furthermore, 
participants indicated a willingness to use the application frequently and even rec-
ommended the application to others. We in fact identified a number of benefits from 
the application, for instance, increased patient engagement. Now more than ever, 
patients will be able to understand their reports, sparking their interest in their 
medical documents. Additionally, being able easily and thoroughly understand their 
diseases can significantly reduce patients’ stress and anxiety; panic is a common 
response when people see complex medical terms in their reports, which we would 
like to reduce. Patients also show improved health outcomes when they better under-
stand their medical reporting of the diagnostics by patients.

However, there are possible challenges with the application. For instance, the OCR 
is performed using cloud tools, so this DPTM will rely on their services and uptime. 
Additionally, although the model was trained on enormous amounts of data, it still 
might not be able to decode certain domain-specific terms. Hence, doctor supervi-
sion could still be required in some scenarios. Despite these concerns, though, with 
continued development in technology, we can expect even more fine-tuned LLMs 
that can minimize doctor interventions to the bare minimum. The application can 
also be a standard issue among hospital customer portals and applications to increase 
the public’s awareness and acceptance of technology in medicine. Using this tool, 
we aim to empower patients to have a better and more active healthcare journey by 
understanding their conditions thoroughly and easily.

10.5  CONCLUSION

With our work for this chapter, we have showcased the potential of combining LLMs 
with OCR in medicine to bridge the understanding gap between patients and their 
complex medical reports. Correctly implementing these technologies shows positive 
results with a bright future for med–tech collaboration. Simplifying complex medi-
cal terms helps people understand their medical conditions, reducing anxiety, stress, 
panic, and similar conditions. Patients can now actively participate in their healthy 
lifestyle by delving deep into their diagnostics. As part of future development, LLMs 
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such as Med-PaLM, PubMed GPT, DRAGON, BioLinkBert are trained on extensive 
medical data and can be used to diagnose medical conditions based on patients’ 
symptoms. Furthermore, newer versions in the GPT family may be released in future 
with many more training parameters and faster throughput, leading to even more 
efficient and accurate results.

REFERENCES

	 [1]	Kumar, Anjani, Akash Goyal, Bipin Kumar Rai, and Shivani Sharma. “OCR Based 
Medical Prescription and Report Analyzer.” In AIP Conference Proceedings, vol. 2424, 
no. 1. AIP Publishing, 2022.

	 [2]	Preetha, S., I. M. Afrid, and S. K. Nishchay. “Machine Learning for Handwriting 
Recognition.” International Journal of Computer (IJC) 38, no. 1 (2020): 93–101.

	 [3]	Sharma, Megha, Tushar Vatsal, Srujana Merugu, and Aruna Rajan. “Automated 
Digitization of Unstructured Medical Prescriptions.” In Proceedings of the 61st Annual 
Meeting of the Association for Computational Linguistics (Volume 5: Industry Track), 
pp. 794–805, 2023.

	 [4]	Chaudhary, Poonam, Vaishali Kalra, and Srishti Sharma. “A Hybrid Machine Learning 
Approach for Customer Segmentation Using RFM Analysis.” In International 
Conference on Artificial Intelligence and Sustainable Engineering: Select Proceedings 
of AISE 2020, Volume 1, pp. 87–100. Singapore: Springer Nature Singapore, 2022.

	 [5]	Weng, Wei-Hung, Yu-An Chung, and Peter Szolovits. “Unsupervised Clinical Language 
Translation.” In Proceedings of the 25th ACM SIGKDD International Conference on 
Knowledge Discovery & Data Mining, pp. 3121–3131, 2019.

	 [6]	Hripcsak, George, John H. M. Austin, Philip O. Alderson, and Carol Friedman. “Use 
of Natural Language Processing to Translate Clinical Information from a Database of 
889,921 Chest Radiographic Reports.” Radiology 224, no. 1 (2002): 157–163.

	 [7]	Hedberg, Niclas. “Automated Invoice Processing with Machine Learning: Benefits, 
Risks and Technical Feasibility.” (2020).

	 [8]	Saavedra, Santiago Valencia, and Ana Lorena Uribe. “Google Cloud Vision and Its 
Application in Image Processing Using a Raspberry Pi.” In Colombian Conference on 
Computing, pp. 102–113. Cham: Springer Nature Switzerland, 2022.

	 [9]	Gonzalez Penuela, Ricardo E., Jazmin Collins, Cynthia Bennett, and Shiri Azenkot. 
“Investigating Use Cases of AI-Powered Scene Description Applications for Blind 
and Low Vision People.” In Proceedings of the CHI Conference on Human Factors in 
Computing Systems, pp. 1–21, 2024.

	 [10]	Dubey, Parul, Pushkar Dubey, and Kailash Kumar Sahu. “Deep Learning-Based 
Serverless Image Handler Using Amazon Web Services.” In Software Engineering 
Approaches to Enable Digital Transformation Technologies, pp. 25–41. Routledge.

	 [11]	Mishra, Anand, Karteek Alahari, and C. V. Jawahar. “Scene Text Recognition Using Higher 
Order Language Priors.” In BMVC-British Machine Vision Conference. BMVA, 2012.

	 [12]	Cao, Dongping, Yong Zhong, Lishun Wang, Yilong He, and Jiachen Dang. “Scene Text 
Detection in Natural Images: A Review.” Symmetry 12, no. 12 (2020): 1956.

	 [13]	Zheng, Haizhong, Jiachen Sun, Shutong Wu, Bhavya Kailkhura, Zhuoqing Mao, 
Chaowei Xiao, and Atul Prakash. “Leveraging Hierarchical Feature Sharing for 
Efficient Dataset Condensation.” arXiv preprint arXiv:2310.07506 (2023).

	 [14]	Desai, Varsha P., and Kavita S. Oza. “Fine Tuning Modeling Through Open AI.” 
Progression in Science, Technology and Smart Computing, PRARUP (2021).

	 [15]	Translator, DeepL. DeepL Translate: The World’s Most Accurate Translator, 2023.



170� Handbook of Deep Learning Models for Healthcare Data Processing

	 [16]	Kumar, Ajay, Sangeeta Rani, Sarita Rathee, and Surbhi Bhatia, eds. Security and Risk 
Analysis for Intelligent Cloud Computing: Methods, Applications, and Preventions. 
CRC Press, 2023.

	 [17]	Singhal, Ayush, Manu Phogat, Deepak Kumar, Ajay Kumar, Mamta Dahiya, and 
Virendra Kumar Shrivastava. “Study of Deep Learning Techniques for Medical Image 
Analysis: A Review.” Materials Today: Proceedings 56 (2022): 209–214.

	 [18]	Kumar, A., D. K. Rajak, P. Kumar, and A. Kumar, eds. Advances in Sustainable 
Biomaterials: Bioprocessing 4.0, Characterizations, and Applications (1st ed.). CRC 
Press, 2024. https://doi.org/10.1201/9781003434313.

	 [19]	Kumar, Ajay, Namrata Dogra, Surbhi Bhatia, and M. S. Sidhu, eds. Handbook of 
Intelligent and Sustainable Smart Dentistry: Nature and Bio-Inspired Approaches, 
Processes, Materials, and Manufacturing. CRC Press, 2024.

	 [20]	Kumar, Ajay, Parveen Kumar, and Yang Liu. Industry 4.0 Driven Manufacturing 
Technologies. Springer Nature, 2024. https://doi.org/10.1007/978-3-031-68271-1.

https://doi.org/10.1007/978-3-031-68271-1
https://doi.org/10.1201/9781003434313


171DOI: 10.1201/9781003467281-13

A State-of-the-Art Model 
for Drug Classification 
Using Image Recognition

Laxmi Poonia, Seema Tinker, Anurag Singh,  
Prachi Agarwal, Emna Mallouli, Ajay Kumar,  
and Ashish Kumar

11.1  INTRODUCTION

Accuracy in drug classification is incredibly important in the health and pharmaceutical 
industries because inappropriate classifications can lead to lethal consequences, adverse 
reactions, or failures in treatments. Counterfeit drugs increase those risks without ade-
quate regulatory measures. In one recent estimate, counterfeit drugs can account for up 
to 10% of the global pharmaceutical trade, which poses a great threat in terms of health 
and finance [1]. In this chapter, we propose a drug image classification and authentication 
model averts health hazards, strengthening confidence in the distribution of drugs.

11.1.1 C urrent Practice and Deficiencies

Although older systems identified drugs using manual inspection or simple learn-
ing models with extremely limited capabilities for feature extraction, these methods 
usually break down when processing complex visual information such as three-
dimensional structural features and lighting and angular variations [2]. Earlier 
models based on convolutional neural networks (CNNs) are good enough for simple 
image classification but are inadequate for deep feature extraction as well as unsu-
pervised learning in managing visually similar drug classes [3, 4]. Both attention 
mechanisms and transformer improvements remain too challenging to achieve high 
accuracy when working with highly visually complex and diverse datasets.

11.1.2 S cope and Contributions

With our work for this chapter, we make a few major contributions. We present a 
thorough architectural framework for advanced drug classification using CNNs, vision 
transformers (ViTs), and self-supervised learning (SSL); this is the general theoreti-
cal framework for blockchain technology integration to authenticate drugs and detect 
counterfeits. We used a multifaceted approach such that the model would look at 
diverse data types: drug composition, manufacturing metadata, and visual data, thereby 
enhancing the precision of classification as well as interpretability of the model.

11
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11.2  LITERATURE REVIEW

11.2.1 CNN s

CNNs form the basis of the backbone of many image classification tasks because of their 
ability to naturally incorporate spatial hierarchies from images. The core ideas behind 
CNNs were initiated by models such as LeNet, AlexNet, and VGG, which introduced 
convolutional architectures that learn progressively higher levels of features from an 
image [5, 6, 7]. Scalability further improved with further development of architectures 
such as EfficientNet and ResNet, combined with residual connections that actually intro-
duced better depth-accuracy trade-offs [8, 9]. Optimized CNNs proved to be quite effec-
tive in drug classification tasks because they could identify unique features of a drug, 
namely color and texture. Processing this complex visual data reduces performance, 
which limits its independent application in drug classification tasks requiring high robust 
spatial recognition and contextual accuracy [10, 11, 12]. Table 11.1 presents distinct CNN 
models that have been significant in the history of image classification.

Figure  11.1 illustrates the architecture of the ResNet50 model, a CNN model 
renowned for its depth due to residual connections. These connections enable train-
ing deep networks without degradation. The figure depicts its layered structure, 
showing the sequence of feature extraction in images and demonstrating how resid-
ual layers enhance accuracy and efficiency in processing drug images.

11.2.2 V iTs

ViTs introduce a new image classification paradigm because they use the self-atten-
tion mechanism in computing long-range dependencies between image patches. ViTs 
work differently without using any convolutional layers. That enables them to include 
global feature extraction and pose better performance on complex visual patterns [7, 
13]. ViTs outperform CNNs in several medical imaging tasks, suggesting that they 
are universally applicable in drug classification, especially where subtle differences 
exist between similar images [14, 15]. The attention mechanism in ViTs helps to 
identify subtle differences between drugs in images; this is crucial for distinguishing 
drugs that look visually similar but have different pharmacologic properties [13, 16].

TABLE 11.1
Models and Their Properties

Model Year Key Features Application in Drug Classification

LeNet 1998 Basic convolutional layers Limited to basic image classification

AlexNet 2012 Deep architecture, ReLU Enhanced feature learning for drug 
characteristics

VGG 2014 Multiple convolutional layers Effective for capturing shape and texture details

EfficientNet 2019 Scalable, depthwise convolutions High accuracy and efficiency for drug 
recognition

ResNet 2015 Residual connections Suitable for capturing complex drug features
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11.2.3 SSL

SSL is extremely useful in learning strong feature representations when annotated 
data is insufficient. Combined with SSL, methods like contrastive learning and pre-
text task generation support the model to learn meaningful patterns. Furthermore, 
satisfactory performance is achieved even when fine tuned on small quantities of 
labelled datasets. Moreover, models comprising CNNs and ViTs in SSL were more 
generalized and robust for classifying drugs in images [17, 18].

11.2.4 �C ounterfeit Detection Using Multimodal 
Learning and Blockchain

Multimodal learning uses several sources of information, such as text, images, and 
metadata, to enhance accuracy and contextual perception of classification [16]. In 
the domain of fighting against fake drugs, blockchain technology offers a decentral-
ized and tamper-proof ledger that would track and authenticate drugs. Each authen-
ticated drug can be stored on the blockchain that would enable real-time verification, 
and chances of fake drugs reaching the patient are reduced [1, 19, 20]. Table 11.2 

FIGURE 11.1  Model structure of ResNet50.
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compares multimodal learning with blockchain technology applied in drug classifi-
cation and counterfeit detection.

11.3  PROPOSED ARCHITECTURE

11.3.1 CNN  Backbone

Our architecture consists of a CNN backbone selected because CNNs can detect nota-
ble features of an image such as edges, textures, and color. We selected EfficientNet 
as the CNN backbone because of its ability to provide balanced usage of resources 
and capability to optimize performance through depth wise scalability [8, 9]. Our 
model uses the efficient layer structure of EfficientNet to pick up morphological 
properties that can be told apart with slight visible cues. Additionally, residuals of 
the CNN connections can enable deeper networks without degradation, crucial for 
preserving information across layers and better learning of complex drug features.

11.3.2 V iT Modules

For example, although ViTs’ use of a module captures global features unlike those used 
in the conventional application, self-attention inside ViTs enables a model to create rela-
tionships between various parts of an image; this allows models to recognize shapes, 
textures, and patterns to differentiate drugs that look alike but serve different purposes 
[13, 14, 15]. This module essentially presents a holistic view of drug images by interpolat-
ing the local features that it infers from CNNs with the global patterns that ViTs perceive.

The architecture of ViT is represented in Figure 11.2. This figure entails how self-
attention enables feature extraction from ViT, showing how this individual model ana-
lyzes patches to figure very minor differences and by doing so is apt at classifying drugs 
by when small visual similarities make other classifications difficult for the model.

11.3.3 SSL  Layer

To overcome the aforementioned problem of small available labeled datasets, we 
employed an SSL layer such that the drug images were pretrained using contrastive 
learning on unlabeled images. The SSL layer improved the model’s feature extrac-
tion, which makes it learn knowledge from visual patterns and relationships in the 
data without the need for explicit labels [21, 22, 23]. In the pretraining stage, the SSL 

TABLE 11.2
Applications and Advantages of Multimodal Learning and Blockchain

Technology Application Advantages

Multimodal Learning Integrates text and image data Enhanced accuracy and contextual depth

Blockchain Secure tracking of drug authenticity Reduces counterfeit drug risk through 
validation
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layer is required to enhance the similarities of different representations of the same 
drug image but reduce the similarity of drug images that are different. It has been 
proven to enhance model robustness, most visibly if conducted with complicated 
drug images whose minor differences have high diagnostic values [24].

11.3.4 M ultimodal Fusion and Blockchain for Counterfeit Detection

The multimodal fusion module integrates visual information with supplemen-
tary drug information like ingredients and manufacturing data to provide a more 
comprehensive representation for the model, potentially improving its accuracy. 
Multimodal learning layers combine these different inputs such that the model can 
leverage both visual and textual features for better classification. Moreover, a block-
chain-based verification layer is introduced as a check on the integrity of each clas-
sified drug. It applies smart contracts that provide each medicine with unique digital 
signatures that it stores on the decentralized ledger. This, thus, allows healthcare 

FIGURE 11.2  The ViT model architecture.
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providers and consumers to verify originality in drugs in real time, thus lowering 
the supply of counterfeit drugs and therefore the integrity of the drug supply chain 
[1, 19, 20].

11.4  EXPERIMENTAL DESIGN

11.4.1  Dataset

The experimental dataset encompasses a large number of labeled images of drugs 
with relevant metadata such as ingredient composition, date of manufacture, and batch 
numbers. We preprocessed the dataset to rescale, normalize, and filter out noise to 
make all the images uniform for better training of the model. Since the class of drugs 
is broad, we balanced the classes to ensure that no bias occurred due to overrepresenta-
tion of some classes of drugs. Data preprocessing entailed resizing and normalizing, 
that is standardizing image dimensions for uniformity; noise filtering, reducing back-
ground noise to improve image clarity; and data augmentation, which meant applying 
transformations (rotate, flip, and alter brightness) to enhance model generalization.

11.4.2 G rading Metrics

To evaluate the proposed model, we took the following metrics to give a multidimen-
sional overview of the model’s performance:

•	 Accuracy: the number of correct positive classifications
•	 Recall: how accurately the model distinguishes the correct drug classes
•	 F1 score: The harmonic mean of precision and recall, balancing the two measures
•	 Blockchain verification rate: the rate at which blockchain verifies authentic-

ity on drugs, a step to further validation beyond classification

11.5  MODEL DEPLOYMENT AND TRAINING

11.5.1 T raining Cycles

We trained the model in two phases: pretraining and fine tuning. For the pretraining, 
the SSL layers learned based on unlabeled images of drugs. The pretraining resulted 
in strong yet general features for fine tuning using labeled data. During the fine tun-
ing, both the CNN and ViT layers were allowed to perceive complex visual patterns, 
while the blockchain layer was optimized for authentication based on unique drug 
characteristics.

11.5.2 M odel Tuning

We tuned the model as follows. First, we used SGD with Momentum, allowing the 
optimizer to converge much more rapidly as model parameters updated dynamically. 
We also modulated the learning rate during training, which can help to stabilize 
learning. Finally, the data augmentation increased the model generalization due to 
added variations in training samples.
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11.6  CHALLENGES AND FUTURE DIRECTIONS

11.6.1 P roblems

•	 Operationalizing this model in the real world has a number of drawbacks 
that will limit its widespread applicability. For one, ViTs are computation-
ally intensive because self-attention is quadratic [7, 13, 15]. It is also the 
case that although SSL addresses some challenges, the major drawback is in 
obtaining good-quality, diverse labeled datasets for training. Additionally, 
while blockchain ensures security, its cost and issues with scalability also 
limit its use in global applications; solutions in cryptography add complex-
ity and cost, such as with zero-knowledge proofs [1, 20]. Finally, it is pos-
sible that the model is not easily generalizable across drug forms. There 
are different forms of drugs, and each type has different strategies for clas-
sifying. Generalization over types like these may be quite challenging and 
needs fine tuning.

11.6.2 F uture Work

However, there are some promising areas for future work. For instance, hybrid or 
linear attention mechanisms in ViTs can enhance the scalability and efficiency 
and alleviate the computational load of these models [13, 14, 15], and transfer 
learning from related tasks and synthetic data generation address data scarcity 
and improving model generalization [21, 23, 24]. Ongoing real-world blockchain 
pilot programs are deploying blockchain in modest real-world drug distribution 
networks to validate its performance in counterfeit detection and scalability in 
operationally realistic settings [1, 19, 20]. Finally, the healthcare and medical 
sectors can be supported greatly by machine learning and artificial intelligence 
techniques [25–39].

11.7  CONCLUSION

The model we propose here integrates convolutional neural networks, vision trans-
formers, self-supervised learning, and blockchain technology, ensuring precision, 
counterfeit detection, and scalability in drug classification. This model will enhance 
the accuracy of drug classification, guaranteeing authenticity in a promising, mas-
sive step forward for the pharmaceutical industry.
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12 Transforming Healthcare 
with Smart Contracts
A Focus on Quality 
of Service
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12.1  INTRODUCTION

Interest in blockchain technology and its possible uses, such as decentralized apps 
(DApps) for different healthcare use cases, has been on the rise [1]. Smart contracts 
are one of the most exciting aspects of blockchain technology for healthcare since they 
has the potential to automate and simplify a wide range of procedures and transac-
tions, boosting both the speed and safety of healthcare operations. However, quality-
of-service (QoS) issues such as scalability, security, and reliability might pose serious 
obstacles to the widespread use and efficacy of smart contracts in healthcare [2].

A smart contract is a self-executing contract that contains the terms and con-
ditions of an agreement between parties. It is written in code and deployed on a 
blockchain network. Smart contracts for healthcare apps can play a significant role 
in automating and ensuring the security of various processes and transactions in the 
healthcare industry. These contracts are typically implemented on blockchain plat-
forms [3], and they help streamline operations, maintain transparency, and ensure 
the privacy and integrity of healthcare data, as shown in Figure 12.1.

Smart contracts typically consist of a consistent set of elements [4]. First, they 
contain information about the parties involved in the contract, including their names, 
addresses, and other relevant details. They also contain the specific terms and condi-
tions of the agreement, such as the services to be provided, the payment terms, and 
any penalties for breach of contract. They also are programmed to execute auto-
matically when certain predefined conditions are met. For example, when a patient 
completes a specific treatment, the smart contract can automatically release payment 
to the healthcare provider [5]. Smart contracts store data related to the agreement, 
including the patient’s medical records and other relevant information, and for secu-
rity, cryptographic techniques ensure the privacy of the parties involved.

Smart contracts follow a certain process. The user first enters the data, which 
is stored and secured in blockchain. Before securing the information, the system 
checks to see if it fulfills the specific terms and conditions required to invoke the 
contract. Once the payment terms are fulfilled and preconditions are satisfied, the 
contract is executed automatically [6], and if preconditions are not met, the specific 
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terms are checked again; furthermore, if payment terms are not fulfilled, penalties 
for breach of contract will be implemented. After the automatic execution, the user’s 
treatment is complete, marking the end of the process. During execution, the needed 
data is secured as well [7].

12.1.1 B lockchain in Healthcare

Blockchain is a decentralized and distributed digital ledger that allows parties to 
record transactions and store data securely and transparently in a tamper-proof and 
permanent way. In healthcare, blockchain technology can be used to improve data 
management, enhance security and privacy, reduce costs, and increase efficiency 
[8]. Some potential applications of blockchain in healthcare include the following 
(Figure 12.2):

•	 Medical Records Management: Blockchain can securely store and share 
patient medical records across providers, reducing duplication of tests and 
procedures, improving patient outcomes, and ensuring data privacy [9].

•	 Clinical Trials: Blockchain can enable secure and transparent tracking of 
clinical trial data, increasing data integrity, reducing fraud, and increasing 
patient safety.

•	 Drug supply chain management: Blockchain can be used to track and verify 
the authenticity of drugs as they move through the supply chain, reducing 
the risk of counterfeit drugs and improving patient safety.

•	 Payments: Blockchain can enable secure and transparent payment transac-
tions between different parties in the healthcare industry, reducing admin-
istrative costs and improving efficiency.

•	 Public health: Blockchain securely stores and shares public health data, 
enabling more effective disease surveillance and response.

•	 Claims processing and fraud detection: Blockchain can be used to auto-
mate claims processing. Smart contracts can verify claims and automatic 

FIGURE 12.1  The structure of smart contracts for healthcare apps.
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payouts, thereby reducing the time and cost associated with manual claims 
processing. Insurance companies can use blockchain to detect and prevent 
fraud by creating a secure, immutable record of transactions that can be 
traced to the original source.

•	 Identity management: Blockchain provides a secure and decentralized 
way to manage patient identities, ensuring that patients are correctly 
identified and that their health data is kept private and secure. It can also 
help prevent identity theft and fraud in healthcare. Despite the poten-
tial benefits of blockchain in healthcare, there are also several chal-
lenges and issues that need to be addressed, such as regulatory barriers, 
interoperability issues, and concerns around data privacy and security 
[10, 11].

12.1.2 �C hallenges with Blockchain and Smart Contracts  
in Healthcare

The adoption of blockchain in healthcare requires significant investment in infra-
structure and technical expertise. In the literature review, we identified that while 
smart contracts offer benefits in the healthcare industry, several challenges need to 
be addressed to ensure their successful implementation.

One of the major challenges associated with smart contracts in healthcare DApps is 
scalability. As the number of participants in the network grows, the computational load 
on the network increases, leading to slower transaction processing and higher fees. 
Another challenge is privacy and security, as the healthcare industry deals with sensi-
tive and confidential patient data. The immutability of smart contracts, which makes 
them tamper-proof, can also make it challenging to correct errors or make changes to 

FIGURE 12.2  Blockchain applications in healthcare.
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the contract. Moreover, the lack of standardization and interoperability among differ-
ent smart contract platforms can also pose challenges for healthcare DApp developers.

Among the numerous advantages of blockchain and smart contracts in health-
care are improved data sharing, enhanced security, reduced costs, improved patient 
outcomes, interoperability, data integrity, faster and more efficient transactions, and 
a standardized protocol for data exchange. However, these technologies also present 
challenges such as regulatory compliance, technical complexity, data quality and stan-
dardization, interoperability and adoption, scalability, data privacy, performance, reli-
ability, transaction processing time, and resource utilization. Regulatory compliance is 
a significant challenge in the highly regulated healthcare industry, as it requires com-
pliance with existing regulations and ensuring data privacy and security. Additionally, 
integrating blockchain technology with existing healthcare systems and infrastructure 
can be challenging. Data quality and standardization are significant given the large 
volume and variety of healthcare data, and interoperability is essential for realizing the 
full potential of blockchain technology in healthcare [12].

Scalability is a major concern in healthcare applications as well because the large 
volumes of data require robust and efficient infrastructure; failure to scale can lead to 
slower transaction processing times and reduced QoS [13]. Allowing patients to control 
their own data and choose who can access it raises privacy concerns even as it helps pre-
vent unauthorized access and use of patient data. However, any issues with security and 
privacy can compromise the integrity of patient data and reduce the QoS of the smart 
contract [14]. Performance is another crucial aspect of blockchain-based smart contracts 
in healthcare. They need to handle large volumes of transactions and data processing in 
a timely manner to avoid delays or bottlenecks. Reliability is essential; smart contracts 
must consistently execute their terms. Processing time is also a concern; the decentral-
ized nature of blockchain technology can slow transaction processing, which can also 
compromise contract QoS [15]. Resource utilization is another challenge, as smart 
healthcare contracts are highly resource intensive for reliable processing of patient data.

Addressing these challenges is crucial for the successful adoption of block-
chain and smart contracts in healthcare DApps [16]. Our proposed approach aims 
to improve the QoS of blockchain-based smart contracts in healthcare DApps by 
addressing these challenges comprehensively and practically. The literature review 
highlights the need for more efficient, reliable, and secure approaches that enhance 
the QoS of smart contracts in healthcare DApps [17].

12.1.3 S mart Contract QoS

The emergence of smart contracts as a viable platform for application development 
across industries, including healthcare, is very encouraging. Blockchain technology, 
the foundation of these self-executing contracts, provides immutability, transparency, 
and security, all of which are essential when dealing with personal health informa-
tion. However, healthcare application performance may be negatively impacted by 
poor QoS of smart contracts, and patient data integrity might be jeopardized as a 
result; in response, contract QoS needs to improve when creating healthcare apps. 
To improve the QoS of smart contracts, we propose integrating dynamic pricing, 
performance monitoring, and load balancing [18]. The suggested method is meant to 
guarantee that the QoS criteria of healthcare apps is met (Figure 12.3).



Transforming Healthcare with Smart Contracts� 185

12.1.4 T he Need for the Research

We believe this work is needed because although researchers have examined consensus 
mechanisms, access control mechanisms, and data encryption to increase the QoS of 
smart contracts in healthcare [19, 20], there is still a knowledge gap. We attempt to close 
that gap by presenting a new method for improving QoS in healthcare smart contracts.

12.1.5 T he Motivation for the Research

Our impetus for this research was to establish a more effective, trustworthy, and secure 
method of constructing healthcare smart contracts. Our work will be useful because 
of the rising need for blockchain-based solutions in healthcare, the inability of current 
blockchain techniques to provide the needed QoS, and the current difficulties connected 
with smart contracts in healthcare. Increased data security, enhanced data sharing and 
interoperability, and decreased administrative expenses are just a few of the possible 
advantages of utilizing smart contracts for more effective and reliable healthcare.

12.2  LITERATURE REVIEW

R. Gupta et al. built a healthcare telesurgery platform called AaYusH based on smart 
contracts. In AaYusH, the IPFS protocol addresses storage cost, and the Ethereum 
smart contract addresses security and privacy. They also introduce a Solidity-based 
smart contract that runs in real-time and can be used with the Truffle suite. The 
authors identified no vulnerabilities in AaYusH’s security when they tested it using 

FIGURE 12.3  Components of our smart contract for healthcare.
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the open-source MyThril tool. Finally, they compared AaYusH’s performance with 
that of the conventional telesurgery system and found that AaYusH was superior in 
terms of latency and data storage cost [1].

N.K. Oflaz et al. discussed healthcare cost efficiency via the use of smart con-
tracts and blockchain technology. Since the introduction of Bitcoin and other crypto 
currencies, the underlying blockchain technology has gained notoriety and is being 
used as a business strategy across a variety of industries. Blockchain allows for exe-
cuting smart contracts between parties without the need for a central authority, there-
fore cutting costs and boosting efficiency across numerous industries. The health 
industry’s use of this technology has been a hot topic as of late, and industry-tailored 
approaches have been gaining traction [2].

I.A. Omar et al. proposed a blockchain-based smart contract solution to stream-
line signing contracts with group purchasing organizations. They present a general 
framework for the healthcare supply chain contracting process, complete with algo-
rithms showing the many possible interactions along the chain. They used the Remix 
integrated development environment (IDE) to write and test the smart contract code, 
and now it can be downloaded from Github. They analyze the costs of different 
stakeholder transactions and discussed security issues as well. Omar et  al.’s sug-
gested blockchain-based solution could be implemented with little to no cost to the 
stakeholders in the decentralized network [3].

S. Joshi et al. proposed a system built on blockchain smart contracts and distrib-
uted storage to facilitate communication between all parties in a supply chain. To 
facilitate automation, transparency, efficiency, and reduced service times, the frame-
work incorporates smart contracts to enforce and display the numerous interactions 
and transactions among the parties. The suggested framework was superior in terms 
of efficiency, security, and cost-effectiveness [4].

A. Sharma et al. offered a unique contract architecture and discussed the ben-
efits, drawbacks, and potential for integrating decentralization and smart contracts 
into the Internet of Medical Things in e-healthcare. The suggested architecture out-
performed conventional methods in terms of average packet delivery ratio, average 
latency, and average energy efficiency [5].

Jagtap et al. described the inner workings of blockchain inr the healthcare indus-
try. In a “chain” of “blocks,” each block header is connected to the one preceding it, 
and each blockchain cannot hold more than one patient’s information. This article 
provides a plan for protecting patient health records. The proposed paradigm priori-
tizes the secure storage and easy accessibility of patient data [6].

R.M.A. Latif et al. reviewed the IDE for exploiting blockchain technology in the 
healthcare industry’s implementation of smart contracts. According to the sequence 
of events, these blocks are connected in blockchain as distributed ledgers, elimi-
nating labor-intensive procedures. Adding an identity manager allowed the applica-
tion to be completely open and safe. The authors mapped the framework onto an 
Ethereum-based application and evaluated it in a hospital setting to determine its 
maturity level and concluded that their suggested framework will be useful in the 
hospital setting and will contribute to improving performance in healthcare [7].

Huang et al. suggested updating target smart contracts with differentiated code 
by using syntax and semantic similarities to find related contracts among more than 
120,000. Experiments showed that the unique code successfully backed smart contract 
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updates, which was very encouraging [8]. Sookhak et al. present a comprehensive 
evaluation of current blockchain-based access control approaches in the healthcare 
sector, providing a framework for classifying current and future advancements in this 
space. To acknowledge the vulnerabilities of the current approaches and emphasize 
the essential security needs for designing a granular access control method, they offer 
a thematic taxonomy of blockchain-based access control techniques [9].

Giordanengo et al. provide a comprehensive overview of the potential applications of 
smart contracts in healthcare, with emphasis on information exchange among patients, 
healthcare providers, and organizations, including why they haven’t caught on yet. Smart 
contracts are legally binding documents that outline the terms of an agreement [10].

ElRahman et al. combined data processing with blockchain to propose an IoT-
Edge architecture for imperturbable data sharing. The suggested system provides 
numerous advantages common to healthcare facilities, such as the secure submis-
sion of examination findings and the total protection of patient data during trans-
mission. The suggested system has a low learning curve and provides the necessary 
utilities to ensure data privacy and security. The authors concluded that the blockchain-
based IoT-Edge architecture performed well [11]. Table 12.1 summarizes the litera-
ture review.

TABLE 12.1
Literature Survey

No. Author/Year Title Methodology Limitation

  [1] R. Gupta et al. 
(2020)

“Aayush: A smart contract-based 
telesurgery system for healthcare 
4.0”

Smart contracts, 
healthcare

Did not consider 
real-life solution

  [2] N.K Oflaz 
et al. (2019)

“Using smart contracts via 
blockchain technology for 
effective cost management in 
health services”

Smart contracts, 
healthcare, blockchain

Lack of technical 
work

  [3] I.A. Omar 
et al. (2021)

“Automating procurement contracts 
in the healthcare supply chain 
using blockchain smart contracts”

Smart contracts, 
healthcare, blockchain

No objectives for 
future work

  [4] S. Joshi et al. 
(2022)

“Enhancing healthcare system 
using blockchain smart contracts”

Smart contracts, 
healthcare, blockchain

Lack of efficiency

  [5] A. Sharma 
et al. (2020)

“Blockchain based smart 
contracts for Internet of Medical 
Things in e-healthcare”

Smart contracts, 
healthcare, blockchain

Need to improve 
the performance 
and accuracy

  [6] S.T. Jagtap 
et al. (2021)

“A framework for secure 
healthcare system using 
blockchain and smart contracts”

Smart contracts, 
healthcare, blockchain

Insufficient data

  [7] A. Latif et al. 
(2020)

“A remix IDE: Smart contract-
based framework for the 
healthcare sector by using 
Blockchain technology”

Smart contracts, 
healthcare, blockchain

Research is 
limited to traffic 
flow

(Continued)
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No. Author/Year Title Methodology Limitation

  [8] Y. Huang et al. 
(2019)

“Recommending differentiated 
code to support smart contract 
update”

Smart contracts There is less 
technical work

  [9] M. Sookhak 
et al. (2021)

“Blockchain and smart contract 
for access control in healthcare: 
A survey, issues and challenges, 
and open issues”

Smart contracts, 
healthcare, blockchain

Lack of security 
and accuracy

[10] A. Giordanengo 
et al. (2019)

“Possible usages of smart 
contracts (blockchain) in 
healthcare and why no one is 
using them”

Smart blockchain Lack of technical 
work

[11] S.A ElRahman 
et al. (2021)

“Blockchain technology and 
IoT-edge framework for sharing 
healthcare services”

Smart contracts, 
healthcare, blockchain

Lack of security 
and accuracy

12.3  PROBLEM STATEMENT

Although the suggested method has shown some encouraging outcomes, it is not with-
out its fair share of caveats. The technique has one flaw in that the assessment criteria 
are too narrow. The simulation findings reported here were generated using a narrow 
set of criteria and may not accurately reflect the complexity of healthcare in the real 
world. To guarantee the suggested approach’s efficacy in a wider variety of settings, 
more assessment against a more comprehensive set of evaluation criteria is required. 
The method’s limited generalizability further hinders its usefulness in the healthcare 
sector. The suggested method is geared at bettering the. As a result, further study is 
required to evaluate the method’s viability for use with a variety of healthcare.

12.4  METHODOLOGY

To improve the service quality of healthcare smart contracts, we adopted a structured 
research methodology. We evaluated our proposed model based on error rate, overall 
performance, and accuracy, and we compared the metrics with those of the traditional 
model. Figure 12.4 presents the research methodology, which we next describe.

Improving the quality of service of smart contracts for healthcare applications is 
a complex task that involves various aspects of research and development. Here’s a 
research methodology to guide your efforts (Figure 12.5):

•	 Literature review: Conduct a comprehensive literature review to understand 
the existing research, solutions, and challenges related to smart contracts in 
healthcare apps. Identify the gaps in current knowledge and potential areas 
for improvement.

TABLE 12.1 (Continued)
Literature Survey
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•	 Define research objectives: Clearly define your research objectives. What 
specific aspects of healthcare DApp smart contracts (security, efficiency, 
privacy, scalability) do you want to improve, and why?

•	 Data collection and analysis: Gather data relevant to the healthcare domain 
and smart contracts. Analyze existing healthcare DApps to identify weak-
nesses and areas for enhancement.

•	 Security and privacy analysis: Given the sensitive nature of healthcare 
data, evaluate the security and privacy aspects of existing smart contracts. 
Identify vulnerabilities and suggest security measures such as encryption, 
access control, or audit trails.

•	 Performance evaluation: Assess the performance of smart contracts, includ-
ing transaction speed, scalability, and resource efficiency. Implement per-
formance benchmarks and metrics to measure improvements.

FIGURE 12.4  The research methodology.

FIGURE 12.5  The process flow of research work to improve smart contract quality of service.
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•	 Scalability solutions: Research ways to make smart contracts more scal-
able to handle a large volume of transactions, whether two-layer solutions, 
sharding, or other techniques.

•	 Blockchain platform selection: Determine which platform (Ethereum, 
Hyperledger Fabric, etc.) is most suitable for healthcare apps and smart 
contracts. Consider factors like performance, scalability, and compatibility.

•	 Interoperability: Investigate interoperability standards and solutions for 
healthcare DApps. Research how smart contracts can communicate with 
different systems and devices in the healthcare ecosystem.

•	 User experience analysis: Evaluate the user experience with healthcare 
smart contracts. Improve the user interface and usability to enhance the 
overall quality of service.

•	 Legal and ethical considerations: Investigate the legal and ethical aspects 
of using smart contracts in healthcare. Ensure compliance with regulations 
like HIPAA (in the United States) or GDPR (in Europe).

•	 Prototype development: Develop prototype smart contracts and apps that 
incorporate the improvements you’ve identified. This will serve as a practi-
cal demonstration of your research.

•	 Testing and validation: Rigorously test the prototype for security, perfor-
mance, and usability. Collaborate with healthcare professionals to validate 
the solution’s effectiveness and adherence to healthcare standards.

•	 Feedback integration: Incorporate feedback from users and stakeholders to 
refine the smart contract and DApp. Iteratively improve the system based 
on real-world usage.

•	 Documentation and knowledge sharing: Document your research methodology 
and findings, and the improved smart contract solution. Share your research 
through academic publications, conferences, or open-source contributions.

•	 Continuous monitoring and maintenance: Healthcare DApps are dynamic, 
and the landscape is continually evolving. Continuously monitor and main-
tain your smart contracts to adapt to changing requirements and emerging 
technologies.

By following this research methodology, you can contribute to enhancing the 
quality of service of smart contracts in healthcare apps, making them more secure, 
efficient, and user-friendly while adhering to regulatory and ethical standards.

12.5  RESULT AND DISCUSSION

The proposed compression and advanced security enhancements for smart contracts 
promise significant advancements in terms of accuracy, error reduction, and perfor-
mance outcomes. By implementing compression techniques, these contracts minimize 
data storage requirements, leading to higher accuracy through reduced data redun-
dancy and overall lower error rates. Additionally, incorporating advanced security 
measures strengthened the integrity of the contract execution, significantly reducing 
vulnerabilities and errors. This, in turn, enhanced the overall performance of these 
smart contracts, making them more efficient and reliable, which is particularly crucial 
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in critical blockchain applications where data accuracy and security are paramount 
concerns. We conducted a simulation in MATLAB to select the cluster head based on 
differing numbers of nodes and scenarios. The MATLAB simulation comprehensively 
evaluates the system according to accuracy, error rate, and performance time.

12.5.1 A ccuracy

This accuracy not only enhances the quality of patient care but also streamlines 
administrative tasks, ultimately contributing to more efficient and reliable healthcare 
services. Table 12.2 and Figure 12.6 present the accuracy results for different classes.

12.5.2 E rror Rate

Blockchain-based smart contracts in healthcare substantially reduce error rates by 
including automation and data immutability, mitigating the risk of errors. Table 12.3 
and Figure 12.7 present the error rate results for different classes.

FIGURE 12.6  Comparison of accuracy.

TABLE 12.2
Comparison of Accuracy

Class Traditional Work Proposed Work

1 90.33% 93.22%

2 90.64% 93.32%

3 90.35% 93.99%

4 90.22% 93.64%

5 90.53% 93.90%

6 90.43% 93.03%
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12.5.3 T ime Taken

By automating tasks such as appointment scheduling, insurance claims processing, 
and record keeping, smart contracts enable healthcare professionals to focus more 
on patient care and less on administrative paperwork. The real-time data access and 
verification mechanisms within blockchain-based systems further expedite decision-
making and enhance patient service. This time-saving approach ultimately leads 
to more efficient healthcare delivery, shorter wait times, and a streamlined patient 
experience, making the healthcare sector not only more accurate and secure but also 
faster and patient-centric. We compared system time consumption for 10 to 60 nodes. 
Table 12.4 and Figure 12.8 present the error rate results for different classes.

12.6  CONVENTIONAL VERSUS ENHANCED SMART CONTRACTS

Here we compare our proposed compression and sophisticated security-enhanced smart 
contract with standard approaches based on multiple criteria. In terms of functionality, 
traditional smart contracts execute code when criteria are satisfied with few features, 
whereas our approach compresses blockchain data to minimize storage and improve 

TABLE 12.3
Comparison of Error Rate

Class Traditional Work Proposed Work

1 9.67% 6.78%

2 9.36% 6.68%

3 9.65% 6.01%

4 9.78% 6.36%

5 9.47% 6.10%

6 9.57% 6.97%

FIGURE 12.7  Comparison of error rate.
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TABLE 12.4
Comparison of Time Taken

Nodes Traditional Work Proposed Work

10 10.12   8.54

20 20.46 17.88

30 30.95 24.56

40 40.56 35.55

50 50.41 47.97

60 60.08 56.99

FIGURE 12.8  Comparison of time taken.

security. This could make contract activities more efficient and secure. In terms of 
security, traditional smart contracts are vulnerable to reentrancy, overflow/underflow, 
and code exploitation, but strong security measures will reduce risks. Regarding effi-
ciency, resource-intensive smart contracts cause public blockchain scaling concerns. 
Compression can reduce data storage and expedite execution but must not compromise 
security. Compression also lower data storage costs, making contracts cheaper; with sig-
nificant gas prices, traditional smart contracts are expensive to execute on blockchains.

In terms of complexity, traditional smart contracts are straightforward to develop 
and deploy, whereas compression and sophisticated security measures make tasks 
more difficult, requiring additional development and testing. Interoperability is also 
an issue. Different blockchain systems enable standardized languages like Solidity 
for conventional smart contracts, but enhancements like non-standard security and 
unique compression algorithms can impair blockchain compatibility. In the reverse 
direction, adoption of traditional smart contracts is much more popular in block-
chain. Advanced security-enhanced contracts might be difficult to accept owing to 
their innovative, nonstandard features and the requirement for comprehensive testing 
and standardization before general deployment. In short, compression and sophisti-
cated security-enhanced smart contracts might improve efficiency and security, but 
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their complexity and interoperability are concerns. Their broad acceptance depends 
on demonstrable benefits and blockchain community standardization.

12.7  CONCLUSION

The implementation of blockchain-based smart contracts, in conclusion, could sig-
nificantly alter the current state of healthcare data management. The full promise of 
smart contracts, however, cannot be attained unless concerns regarding their accu-
racy and performance are addressed. This chapter offered an original method for 
enhancing the usefulness of healthcare smart contracts.

Using deep learning and blockchain technology improves the quality of service of 
healthcare smart contracts in a new and efficient way, as reflected in the simulation 
results. The comparison between our proposed method and conventional approaches 
underscores a pivotal transformation in the landscape of blockchain-based applications. 
Conventional smart contracts, while effective in automating predefined actions, often 
grapple with challenges such as scalability, vulnerabilities, and limited data optimiza-
tion. In contrast, the proposed compression and advanced security enhancements repre-
sent a forward-thinking evolution. The introduction of compression techniques aims to 
significantly reduce data storage requirements, enhancing efficiency and lowering costs, 
while the incorporation of advanced security measures promises a substantial decrease 
in vulnerabilities and risks. However, it is essential to balance the allure of these advance-
ments with potential complexities and concerns regarding interoperability and adoption.

12.8  FUTURE SCOPE

Smart contracts built on blockchain technology have given patients more say over their 
data and allow healthcare providers to exchange information. They are also ameliorat-
ing a number of the safety and privacy issues that have plagued conventional healthcare 
delivery models. The medical industry stands to benefit greatly from further research in 
this area, and the field of artificial intelligence stands to benefit as well. Incorporating 
new technologies like the Internet of Things and edge computing, together with cutting-
edge machine learning methods, may help to accomplish this goal.

Smart contracts have been integrated into current healthcare systems to improve 
interoperability and ease data interchange. These innovative contracts offer improved 
accuracy, error reduction, and overall performance, although their successful inte-
gration into the blockchain ecosystem depends on careful consideration of their 
implications and suitability for specific use cases. The future will likely see a transi-
tion toward a more secure, efficient, and reliable smart contract paradigm, setting a 
higher standard for blockchain-based transactions and applications.
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13.1  INTRODUCTION

The rapid evolution of machine learning and image recognition technologies has 
transformed various fields including healthcare. In dermatology, the traditional 
method of diagnosing skin diseases relies heavily on the experience of dermatol-
ogists, who examine visual cues and symptoms on the skin. This process can be 
subjective and prone to human error, however, particularly in regions with limited 
access to specialists. Furthermore, the increasing global burden of skin diseases 
makes timely diagnosis essential for effective treatment, especially in remote or 
underserved areas [1–6].

Deep learning and image recognition offer promising solutions by diagnosing 
skin diseases using automated systems. These systems use neural network archi-
tectures, particularly CNNs, to recognize patterns in skin images, thereby provid-
ing accurate, scalable, and timely diagnostic support. Such systems significantly 
enhance healthcare delivery by providing early diagnoses, improving diagnostic 
accuracy, and alleviating the workload on healthcare professionals [4, 7–10].

In this chapter, we introduce a prototype model designed to detect skin conditions 
using deep learning-based image recognition [1–5, 11–15]. The prototype utilizes 
CNNs to automatically identify skin-related conditions and allow patients to receive 
early detection and treatment, particularly in remote areas with limited healthcare 
access. We discuss the methodologies employed, the model architecture, the datasets 
used, and the challenges and benefits of developing such a system.

13.2  BACKGROUND

Skin diseases affect millions of individuals worldwide, ranging from mild conditions 
like acne to more severe diseases such as skin cancer. According to the World Health 
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Organization (WHO), skin diseases account for a significant portion of the global 
disease burden, with many cases being undiagnosed or improperly diagnosed due to 
a lack of access to dermatologists, especially in rural areas [16–18]. Conditions such 
as acne, eczema, psoriasis, and melanoma are typically diagnosed through visual 
inspection, often supported by dermatoscopic tools. However, human error and vari-
ability in expertise can lead to misdiagnoses.

The advent of deep learning, especially CNN-based image recognition, has revo-
lutionized medical image analysis [19–23]. CNNs excel at detecting visual patterns 
in images, making them particularly effective for tasks like image classification, 
segmentation, and object detection [24–26]. For skin disease detection, CNNs are 
trained to recognize specific patterns, textures, and shapes that indicate the presence 
of particular conditions [4, 27–29]. Automated systems powered by these networks 
enhance diagnostic accuracy, provide quicker results, and improve healthcare access 
in remote regions [3, 8, 30–33].

For this chapter, we developed a deep learning prototype model to detect skin dis-
eases from facial and skin images. The model utilizes CNNs for feature extraction and 
disease classification to provide an automated diagnostic solution. By leveraging deep 
learning, we aimed to develop a robust system capable of assisting both medical profes-
sionals and patients in the early detection and diagnosis of skin conditions. To gather the 
literature we used to guide the study, we followed the flowchart in Figure 13.1 [10, 34].

FIGURE 13.1  The multilevel literature search strategy.
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13.3  OBJECTIVES

Our objective for this model was for it to use deep learning, specifically CNNs, to 
analyze and identify patterns in skin images [1, 12, 13, 35] and automatically detect 
skin diseases in the images [3, 16]. We also wanted to integrate a user-friendly inter-
face that makes it easy to be used by both doctors and patients [2, 16].

In the prototype model, image processing is divided into image acquisition, 
image preprocessing, and dataset division. Image preprocessing includes image size 
adjustment, normalization, and noise. A typical machine learning process for image-
based disease categorization is shown in Figure 13.2. This comprehensive workflow 
is frequently used in medical image processing.

13.4  METHODOLOGY

13.4.1 P rototype Overview

With this prototype model, we aimed to use CNN architectures to detect skin dis-
eases from images. We trained the system on a dataset containing images of different 
skin conditions, and it accurately predicted the different condition. The prototype 

FIGURE 13.2  Skin disease image recognition based on machine learning.
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also enables patients to upload images of skin conditions for automated analysis [5, 
6, 12, 36–38]. The main components of the model include (Figure 13.3) are image 
acquisition, preparing input images for analysis via image preprocessing and aug-
mentation [19, 33, 39], CNNs to extract image features and learning patterns related 
to diseases [2, 4, 5, 40–42], and classifying diseases in the final CNN layer [1, 26, 
43]. Then we evaluated model accuracy, precision, recall, and other performance 
metrics [6, 16, 44–47].

13.4.2 M odel Architecture

The architecture of the model is based on CNNs which are particularly effective in 
image recognition tasks due to their ability to detect patterns, shapes, and texture 
in images. The detailed model architecture is described in Table 13.1 and shown in 
Figure 13.4. The input layer accepts the preprocessed images [2, 4, 12, 37, 43, 41]. 
Then the model begins with convolutional layers that apply convolution filters to the 
input image to detect features such as edge, texture, and other specific patterns that 
indicate certain conditions [1, 16, 26, 43, 45, 48]. Between convolution layers 1 and 2, 

FIGURE 13.3  The workflow of a deep learning-based approach to detect skin diseases 
from images.
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TABLE 13.1
CNN Architecture Layers and Parameters

Layer Description Parameters

Input Layer Receives preprocessed images Image Size: 224 × 224 × 3 (RGB) or 
224 × 224 × 1 (grayscale)

Convolution Layer 1 Extracts initial features using filters Filters: 32, Size: 3 × 3, Activation:  
ReLU

Max Pooling Layer Reduces spatial dimensions Pool Size: 2 × 2

Convolution Layer 2 Extracts more complex features Filters: 64, Size: 3 × 3, Activation:  
ReLU

Fully Connected Layer 1 Integrates features for classification Neurons: 512, Activation: ReLU

Dropout Layer Prevents overfitting Dropout Rate: 0.5

Fully Connected Layer 2 Further integrates feature data Neurons: 256, Activation: ReLU

Output Layer Provides probabilities for each 
disease class

Activation: SoftMax (multiclass) or 
Sigmoid (binary)

FIGURE  13.4  A  multistage CNN architecture optimized for feature extraction and 
classification [33, 42].
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a max pooling layer reduces the spatial dimensions of the output from the convolu-
tion layer. After a series of convolutional and pooling layers, the output is flattened 
and passed through fully connected layers to make the final prediction. The dropout 
layer reduces overfitting by randomly setting a fraction of input units to 0 during 
training phase. The final layers use SoftMax activation to output probabilities for 
acne, eczema, or melanoma. Binary classification is either disease or no disease and 
uses sigmoid activation. For multiclass classification, the number of neurons equals 
the number of disease categories [9, 16, 26, 33, 42, 49]. The neural network model 
consists of various layers designed to process and classify input images for disease 
detection.

13.4.3  Dataset

The success of any deep learning model depends largely on the quality and quantity 
of the dataset used. Datasets must include a variety of skin tones, lighting conditions, 
and disease stages, ideally with expert dermatologist annotations. For our prototype 
model, skin cancer dataset from International Skin Imaging Collaboration was used 
which contains over 25,000 images for skin lesion classification and HAM10000. 
Following convention, we divided the dataset into sets for training, validation (tune 
hyperparameters, ensure model generalization), and testing [6, 32].

13.4.4  Data Preprocessing and Augmentation

To ensure that the model generalized well to unseen data, we used several tech-
niques. For instance, with rescaling, we normalized pixel values to the range 
[0,1] dividing by 255. For standardization, we resized all images to a fixed 224 × 
224 pixels to ensure compatibility with the CNN model. Then, we augmented 
the dataset using random rotations, flips, zooms, and shifts. This increases the 
size of the dataset and makes the model robust to variations in input data [38, 
42, 50, 51].

13.4.5 M odel Training and Evaluation

We compiled the model using the Adam optimizer to efficiently adjust learning rates 
and minimize loss function. We used categorical cross-entropy loss for binary clas-
sification. We trained the model with the training dataset over a specified number of 
epochs with batch sizes of 32 or 64. After validation, we evaluated the model on the 
test set for accuracy, precision, recall and F1 score is used to evaluate the model’s 
performance [1, 4, 15, 33, 43, 52–54].

13.5  PROTOTYPE MODEL WORKFLOW

	 1.	 Image Upload.
Capturing or uploading a high-resolution image of the affected area.

2.	 Data Preprocessing.
Cleaning, normalizing, and passing through CNN model for analysis.
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3.	 Disease Detection.
The model processes the image and classifies the condition as acne, eczema, 
or melanoma.
The model then calculates the confidence score for the likelihood of the 
diagnosis.

4.	 Output and Suggestions.
The system provides a diagnostic result along with suggestions for treat-
ment. The user can get information about the detected disease, symptoms, 
and next steps for medical consultation.

13.6  DEPLOYMENT

Once the model is trained and evaluated, it can be deployed in healthcare systems. 
This model can be integrated into telemedicine platforms, allowing patients to sub-
mit images of their skin condition and receive automated diagnostic assistance. 
Clinics and dermatology centers could use this model to provide additional diagnos-
tic support [1, 4, 43, 44, 51, 52].

13.7  BENEFITS

Such a system has a number of benefits. For instance, this model assists in early diag-
nosis of serious skin conditions, which allows for early treatment [43, 47]. The proto-
type model also supports remote healthcare: Patients in remote areas with no access 
to a dermatologist can still receive preliminary diagnosis and advice [41, 46]. In terms 
of scalability, the model can be deployed into mobile apps, websites, and telemedicine 
platforms for wide usage [39]. The model can also continually be improved by feeding 
it more data for learning new patterns in rare and complex skin conditions [38, 49].

13.8  CHALLENGES

However, there are concerns that need to be considered with the model. As with all 
image recognition technologies, data quality is crucial; blurry or improperly labeled 
images reduce model accuracy [40, 53, 54]. Additionally, given that the model is 
intended for use in medical diagnosis, it will be essential to ensure that it meets all 
the ethical guidelines, including privacy concerns to protect patient data [37]. In 
terms of interpretability, healthcare personnel should be able to interpret the model’s 
predictions; also, user trust will likely increase if the model explains why a certain 
condition is detected [48, 55]. The model will need to be able to generalize to diverse 
types of skin tones, lighting conditions, image qualities and disease severity to avoid 
biased predictions [44, 46, 56]. Finally, approval might be needed from the medical 
regulatory authorities if the system is used for diagnostic purposes [41, 43].

13.9  FUTURE TRENDS

Although this prototype model is effective, numerous avenues remain for further 
development and research. For instance, in an upgraded model, high-resolution 
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dermatoscopic images might add more details on skin lesions and thereby increase the 
accuracy of cancer and other diagnoses [6, 7, 37, 43, 57, 58]. Additionally, the model 
is optimized to be lightweight, but it needs to be optimized for real-time mobile diag-
nosis; techniques such as model quantization and pruning and employing an efficient 
architecture like MobileNet could reduce the computational load [8, 39, 48, 59].

We also see that future models will involve more inculcation of inputs like the history 
of the patient, symptoms, and genetic factors to diagnose a patient completely [41, 46] 
and will extend to other skin diseases. The prototype model currently targets only a few 
diseases; extending the model to other diseases with more diverse skin types, including 
rare diseases, will make its use more comprehensive and effective [10, 44, 49, 60]. In 
terms of interpretability, the tool Grad-CAM enhanced the explainability of the mod-
el’s predictions, making the model more trustworthy in sensitive health environments. 
Dermatologists will now clearly see where the model focused on the image to bring out 
the diagnosis [45, 48, 61]. This model will be used by dermatologists and other healthcare 
providers to guarantee its feasibility and truly represent what patients need in the world 
[44, 46]. Machine learning and artificial intelligence also play vital role in healthcare 
and medical sectors [62–76]. From here, the prototype model would expand to an enor-
mously potent therapeutic tool for both healthcare personnels and patients hence improv-
ing health outcomes globally in relation to diseases involving the face and skin.

13.10  CONCLUSION

This prototype model for detecting skin diseases using image recognition presents a 
promising application of deep learning in the medical field. By using neural network 
architectures like CNN and image data, the system offers early detection, reducing 
manual diagnostic errors and potentially saving lives. CNNs for feature extraction 
and classification have proven effective in recognizing patterns in images related to 
skin conditions. The proposed model serves as a foundation for developing scalable 
solutions in dermatology. This system could become an essential tool for dermatolo-
gists, helping them with quick, accurate diagnosis and early treatment. The prototype 
could be enhanced, however, such as mobile deployment and wider disease coverage.
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14.1  INTRODUCTION

Innovations in brain-computer interface (BCI) technology and Arduino integration 
have propelled the development of brain-controlled robots, marking a significant 
advancement in human–robot interaction. With this study, we delve into the realm of 
brain-controlled robotics, examining how Arduino, renowned for its versatility as a 
microcontroller platform, intertwines with BCI technology. The exploration encom-
passes Arduino’s array of sensors, algorithms for data processing, and communica-
tion protocols crucial for constructing brain-controlled robots.

The investigation extends to the potential applications and impacts of brain-
controlled robots, spanning from aiding individuals with motor impairments in regain-
ing mobility and autonomy to enhancing collaboration in industrial human–robot 
interactions. We scrutinize the challenges and prospects within this domain, identify-
ing avenues for further research and development. Brain-controlled robotics represents 
a groundbreaking innovation poised to revolutionize the interactions with the world.

Researchers and engineers have leveraged advancements in BCIs and Arduino inte-
gration to devise mind-controlled robots. Electroencephalography (EEG) emerges as a 
prevalent technique for measuring brain activity in such devices [1]. The Arduino plat-
form facilitates the seamless creation of both hardware and software components for 
brain-controlled robots. Arduino boards equipped with microcontrollers and an extensive 
range of input/output capabilities offer an ideal platform for integrating sensors, analyz-
ing brain signals, and orchestrating robotic systems. Crucially, Arduino boards feature 
analog-to-digital converters that facilitate the transformation of analog signals like EEG 
data into a digital format for further processing [2]. Whether through wireless modules or 
cable connections, communication with the BCI enables real-time transmission of com-
mands from the interface to the robot, facilitating instantaneous responsiveness.

14.2  RELATED RESEARCH

Pujari et al. [3] developed a robot for remote child monitoring integrating Raspberry 
Pi 3, cameras, and connectivity technologies. Mishi et al. [4] created an automated 
vehicle with Arduino-Uno and Raspberry Pi, utilizing GPS for tracking and managing 
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motion systems. Chakraborty et al. [5] proposed an Android app-based system for 
controlling a robotic car employing Bluetooth sensors and ultrasonic technology. 
Lee et al. [6] described an autonomous guide robot powered by Arduino-Uno-R3 
and employing QR code navigation and ultrasonic sensors. Amareswar et  al. [7] 
presented a military service robot with metal detection capabilities using Android 
devices. Premkumar et al. [8] suggested a smartphone-controlled robotic arm system 
using Raspberry Pi and Android, and Ali et al. [9] introduced an Android-operated 
robotic arm with Wi-Fi communication. These studies offer insights into diverse 
applications of robotics and connectivity technologies.

TABLE 14.1
Studies on Robotics and Connectivity Technologies

Authors Research Outcomes Methodology/ 
Techniques Used

Other Applications

Pujari et al. [3] Design of a robot for remote 
monitoring of children; 
integration of Raspberry Pi 3, 
camera module, Wi-Fi, and 
Bluetooth

Establishing connection 
between robot and 
Raspberry Pi; Coding in 
Python

Mishi et al. [4] An automated vehicle; 
utilization of Arduino-Uno, 
Raspberry Pi, and GPS 
technology

GPS for vehicle tracking 
and obstacle distance 
measurement

Chakraborty 
et al. [5]

An Android application-
based monitoring and 
controlling system for a 
robotic car

Implementation of various 
sensors and Bluetooth 
technology for 
communication; utilization 
of ultrasonic sensors

Lee et al. [6] An autonomous tour guide 
robot; integration of 
Arduino-Uno-R3, 
Bluetooth module, and 
ultrasonic sensor

Utilization of ultrasonic 
range sensors and QR code 
recognition; navigation 
based on QR codes; 
text-to-speech feature

Detection of nearby 
objects; data gathering 
for smooth movement; 
utilization of PID 
(proportional-integral-
derivative) calculation

Amareswar 
et al. [7]

A multipurpose military 
service robot; incorporation 
of Android device, Bluetooth 
module, and Arduino Uno

Utilization of DC motors, 
wireless camera, and metal 
detector; detection of 
explosives

Detection of explosives; 
visual representations 
of surroundings

Premkumar 
et al. [8]

A smartphone-based robotic 
arm control system; 
incorporation of Raspberry 
Pi, Android, and Wi-Fi

Implementation of 
Java-based Android 
application; communication 
with Raspberry Pi via Wi-Fi

Ali et al. [9] An Android-operated robotic 
arm; establishment of 
communication via Wi-Fi

Utilization of Android 
phone and Raspberry Pi 
board; simulation of 
human hand movements
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14.3  THE PROPOSED SYSTEM

The proposed system is designed based on a BCI for detecting a person’s eye blink 
[10]. A user can control the robot using MATLAB GUI. The signal from BrainSense 
is read and processed in MATLAB. If an eye blink is detected, the corresponding 
interrupt is sent to Arduino for robot control. The suggested solution integrates BCI 
technology with Arduino’s flexibility to let people operate robots with their thoughts. 
Let’s examine this intriguing project’s hardware and software needs.

a)	 Hardware:
i)	 Arduino Board: The system’s microcontroller platform, the Arduino 

board, interfaces with sensors, processes brain inputs, and controls 
the robot. Arduino Uno, Mega, and Nano are popular alternatives with 
enough computing power and input/output possibilities [11].

ii)	 Emotiv EPOC, Neurosky MindWave, and OpenBCI EEG sensors 
record brain activity. Electrodes on the user’s scalp detect and record 
brain electrical impulses [12].

iii)	An amplifier circuit boosts the signal strength of the faint, noisy EEG 
signals while a filter circuit removes noise. These circuits transmit sig-
nals reliably [13].

iv)	 A digital signal processor or microcontroller signal processing unit pre-
processes amplified and filtered EEG signals. This unit extracts, classi-
fies, and generates commands from brain signals [14].

v)	 The application determines the robot platform (humanoid, wheeled, 
robotic arm). Robot platforms should match functionality and command 
execution [15].

vi)	 Actuators translate BCI interface instructions into physical motions. 
The robot platform may use motors, servos, or other systems. Actuators 
let the robot work and interact [16].

b)	 Software Requirements:
i)	 The Arduino IDE serves as a straightforward tool for creating, compil-

ing, and uploading code to the Arduino board. It simplifies microcon-
troller programming [17].

ii)	 EEG signal processing and classification need software algorithms dis-
tinguish mental states from signals and create robot orders. Support 
vector machine (SVM), artificial neural network (ANN), and CNN are 
popular machine learning algorithms [18].

iii)	The BCI and robot must communicate through a protocol. Arduino 
boards send robot orders over Bluetooth or Wi-Fi [19].

iv)	 Complex robots need specialized control software to execute the BCI 
instructions to coordinate actuator motions and guarantee smooth and 
accurate mobility.

v)	 Feedback and system interaction need a user-friendly interface [20]. 
This might be a computer graphical user interface (GUI) or a robot dis-
play. The interface should give clear instructions, real-time feedback, 
and system calibration and customization.
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These hardware and software requirements enable the Arduino-based brain-con-
trolled robot system.

14.4  THE WORKING MODEL

A brain-controlled robot using Arduino involves a complex interplay of hardware, 
software, and the human brain. This model enables users to translate their thoughts 
and mental commands into physical movements of the robot. Figure 14.1 depicts 
the block diagram of the model, and Figure 14.2 represents the general working 

FIGURE 14.1  Block diagram of the brain-controlled Arduino robot.

FIGURE 14.2  Working model of the brain-controlled Arduino robot.
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model. Next we explore the step-by-step process of how this fascinating system 
operates.

Signal acquisition: The process begins with the acquisition of brain signals 
using an EEG sensor. The electrodes of the sensor are placed on the user’s 
scalp to capture electrical signals generated by the brain. These signals 
reflect the user’s cognitive states and intentions.

Signal processing: The acquired brain signals are sent to the signal processing 
unit, which can be a microcontroller or a DSP. The signal processing unit 
performs various tasks to extract meaningful information from the EEG 
signals. This includes amplifying and filtering the signals to enhance their 
quality, removing noise, and isolating relevant frequency bands [21].

Feature extraction: In this stage, the signal processing unit analyzes the prepro-
cessed EEG signals to extract specific features that correspond to different 
mental states or commands. Common features include power spectrum density, 
event-related potentials, or statistical measures derived from the signal [22].

Command classification: Employing machine learning algorithms such as SVM, 
CNN, or ANN, the extracted features are classified into distinct mental states 
or commands [23]. The training phase involves providing labeled data to 
teach the algorithm to recognize specific patterns associated with each com-
mand [24]. The classified command is then sent to the Arduino board.

Arduino control: The Arduino board acts as the central control unit for the 
robot. It receives the classified command from the signal processing unit 
and converts it into appropriate control signals for the robot’s actuator [25]. 
The actuators, such as motors or servos, generate the necessary physical 
movements based on the received commands.

Robot action: The control signals from the Arduino board activate the robot’s actua-
tors, resulting in the desired physical actions [26]. For instance, if the user thinks 
of moving the robot forward, the Arduino board translates this command into 
motor control signals, causing the robot to move in the specified direction.

Feedback and iteration: The system provides feedback to the user, allowing 
them to perceive and assess the robot’s response. This feedback can be visu-
alized through a GUI or displayed directly on the robot. The user can iterate 
and refine their mental commands based on the feedback received, improv-
ing the accuracy and control over time.

Continuous interaction: The brain-controlled robot functions within a continu-
ous interaction loop, where EEG sensors continuously capture brain signals. 
These signals undergo processing, classification, and real-time utilization 
to govern the robot’s actions. This setup allows users to exert seamless and 
intuitive control over the robot’s movements solely through their thoughts.

14.5  RESULT ANALYSIS

Here are some of the most important findings and consequences of this approach. 
First, we found that the EEG sensors accurately recorded the user’s brain’s electrical 
activity. This illustrates that EEG technology can be used to create functional BCIs, 
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although the EEG signals are improved by the signal processing unit for tasks like 
signal amplification, noise suppression, and isolating certain frequency bands. The 
system’s precision and dependability are enhanced by the robust signal processing.

The preprocessed EEG data are successfully analyzed by the signal processing 
unit, which extracts the desired information; each of these characteristics represents 
a unique mental state or set of instructions. Power spectral density and event-related 
potentials are two well-suited characteristics for recognizing mental states. The col-
lected characteristics are then efficiently classified into separate mental states or 
instructions using SVM, CNN, or ANN. The system is trained to identify patterns 
that are unique to each instruction. This exact categorization of commands is essen-
tial for accurate robot operation.

The Arduino board is the robot’s trusted nerve center. The encrypted orders are 
received, and the resulting control signals are successfully applied to the robot’s 
actuators. Actuators carry out the specified activities in response to the input instruc-
tions. The robot’s actuators are driven into action by control signals sent via the 
Arduino board; these responses are in sync with the user’s thoughts, proving that the 
system can translate mental orders into physical ones. One of the most important fea-
tures of the system is the feedback it gives to the user. Based on the robot’s reaction, 
the user can evaluate and adjust their mental orders. Over time, a user’s expertise 
might increase thanks to this cycle of feedback and refinement. A major success is 
the system’s capacity to function in a continuous interaction loop; it allows the user 
to effortlessly and naturally command the robot’s actions with just their thoughts. 
Uses for this kind of constant communication in assistive technology and human–
machine interactions are on the rise.

When it comes to signal gathering, processing, feature extraction, command cat-
egorization, control, and user interaction, the working model of a brain-controlled 
robot built with Arduino exhibits outstanding results utilizing the approach pre-
sented in the chapter. These findings show considerable promise for the creation of 
functional brain-computer interfaces for use in contexts such as including medicine, 
robotics, and assistive technology.

14.6  FUTURE SCOPE

The future investigation of the Arduino-based brain-controlled robotic system 
encompasses a variety of paths for exploration including refining signal pro-
cessing using advanced algorithms, implementing real-time data processing to 
reduce latency, and developing adaptive control strategies capable of dynamically 
responding to user cognitive states. Moreover, there is an emphasis on investigat-
ing multimodal interfaces to enhance user input and assessing user experience and 
accessibility, particularly for individuals with mobility impairments. Additionally, 
researchers aim to broaden the scope of BCI-controlled robotics applications across 
sectors such as healthcare, gaming, education, and industrial automation. Ethical 
considerations regarding data security and privacy, as well as the scalability and 
cost-effectiveness of real-world deployment, are also pivotal aspects. This holistic 
approach aims to foster innovation while ensuring responsible and inclusive utiliza-
tion of BCI technology.
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14.7  CONCLUSION

This chapter presents a versatile and flexible framework capable of adjusting to vari-
ous factors such as focus, meditation levels, and the sensitivity threshold for initiating 
new directions of movement through eye blinks. Despite differences in individuals’ 
blinking rates, the algorithm can be fine tuned to precisely detect blinks, ensuring 
accurate wheelchair control. Numerous experiments have highlighted the effective-
ness of Arduino-based brain-controlled robots in various fields, including prosthet-
ics, exoskeletons, telepresence, and gaming.

Although progress has been made in improving system performance, challenges 
remain, particularly in refining signal processing and feature extraction to enhance 
the accuracy of command categorization. Managing background noise interference is 
crucial for optimizing the functionality of brain–computer interfaces. Additionally, 
designing intuitive interfaces is essential for ensuring a positive user experience.

In conclusion, the integration of brain–computer interfaces with Arduino-based 
robotics signifies a significant advancement in human–machine interaction. Through 
the incorporation of communication modules, signal processing algorithms, and 
EEG sensors, individuals gain unprecedented control over robots using their minds. 
Nevertheless, ongoing research endeavors strive to enhance the accuracy, reliabil-
ity, and practicality of brain-controlled robotics, envisioning a future where human 
thoughts seamlessly guide robotic actions.
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15.1  INTRODUCTION

Skin cancer is a significant global problem for public health, with implications for 
both the human population and the global economy [1]. The skin is made up of two 
main layers: the epidermis and dermis, and cancer is one of the many skin disorders 
that result from abnormalities in the epidermis. Skin cancer has become increas-
ingly prevalent worldwide [2]. Given that the skin is the body’s largest organ, this is 
not unexpected [3]. Figure 15.1 presents two categories of skin cancer: benign and 
malignant. The classification of a lesion is critical because untreated malignant can 
lead to tumor inoperability and ultimately death [4].

Melanoma, a cancerous tumor that can spread to other parts of the body, is often 
indicated by the appearance of bleeding sores as well as unevenly spaced black, 
brown, and tan tones, and areas of red, pink, blue, grey, or white. Melanoma typi-
cally begins with melanocytes of the skin that grow larger over time [5, 6]. The 
deadliest type of skin cancer is malignant melanoma: if not detected early, it can be 
fatal. On the other hand, a benign tumor appears like a mole on the skin and grows 
but does not spread. Signs of a malignant tumor include a sore that does not heal, 
a scaly growth that bleeds or forms a crust, or a hard red nodule. These typically 
occur on sun-exposed areas of the body such as the palms, lower lip, ears, nose, and 
forehead [7].

More than three million Americans are diagnosed with skin cancer every year 
[8, 9], making it the dominant cancer in the country. Early identification is critical 
for successful treatment, with predicted five-year cure rates above 90% for early-
stage diagnoses and just 20% for late-stage diagnoses [10–12]. Physicians typically 
use biopsy to identify skin cancer, which involves taking a sample of a potentially 
cancerous skin cancer for examination [13]. This process can be slow, challenging, 
and time-consuming. However, because of computer technology, skin cancer signs 
can be promptly, inexpensively, and painlessly identified [14]. The method involves 
combining image processing and artificial intelligence for categorization and has 
proven effective in detecting skin cancer. Malignant melanoma is a difficult condi-
tion to identify due to the similarities across skin lesions. However, there are certain 
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distinguishing features, including the ABCD parameters, which refer to asymmetry, 
border irregularity, a wide range of color patterns, and a diameter greater than 6mm. 
These, along with other image components, greatly enhance the ability to detect 
skin cancer [15, 16]. Figure 15.2 presents the ABCDE rule for the early detection of 
malignant and benign melanoma [17, 18].

FIGURE 15.1  Skin cancer classification.

FIGURE 15.2  ABCDE rule for the early detection of malignant and benign melanoma.
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Any growths on the skin should be examined by a dermatologist as soon as pos-
sible if they have altered in size, shape, or color or is painful, bleeding, or new as 
these can be signs of a cancerous or precancerous tumor.

15.2  BACKGROUND STUDY

On these concerns, several scholars have carried out several relevant investigations. 
When employing deep learning-based approaches to screen for melanoma, Harangi 
et al. [19] presented DConvNet, which integrates the outputs of three distinct struc-
tures of the ISBI-2017 dataset to increase its accuracy. However, the study highlights 
the challenge of limited labeled images for training reliable automatic melanoma 
screening systems. Emuoyibofarhe et  al. [20] classified approximately 2300 pho-
tos from the ISIC dataset using ConvNet and the InceptionV3 model on a mobile 
smartphone, obtaining accuracy of 90% and sensitivity of 84%. While they utilized 
Basic CNN, VGG16, and Google Inception V3, applying more models could poten-
tially have led to increased accuracy. In their research, Bhavya et al. [21] employed 
InceptionV3 with a CNN that correctly classified 2437 skin cancer photos with 
accuracy of 85%. However, the authors did not investigate the performance of other 
models.

Demir et al. [22] investigated the performance of ResNet-101 and InceptionV3 
on a dataset of 2437 pictures for identifying skin cancer. Their result shows that 
InceptionV3 achieved the higher accuracy, 87.42%, in image classification as malig-
nant or benign. However, the authors did not explore the use of other models. Hekler 
et  al. [23] used deep learning algorithms to categorize melanoma histopathologic 
images, with the aim of improving the human evaluation process and comparing the 
results with those from experienced histopathologists. The basic CNN model’s accu-
racy was 76%, but, the limitation of this study was that it only determined whether a 
cancer was a nevus or a melanoma.

Lopez et al. [24] utilized VGGNet-based ConvNet to categorize 1279 skin cancer 
pictures obtained from the ISIC-2016 Repository database and achieved classifica-
tion accuracy of 78.66%. However, the study is limited by the small amount of avail-
able training data. Yu et al. [25] developed a CNN model with fifty or more layers 
to classify dangerous skin cancer using ISBI-2016 data that achieved accuracy of 
85.5%; the authors suggested that increasing the quantity of pictures used in the 
research could improve the model’s accuracy. To categorize more than nine skin 
pictures, Kawahara et al. [26] employed transfer learning as a feature extractor to 
categorize more than nine non-dermoscopic images rather than training the models 
from scratch. However, their model encountered difficulties in accurately diagnosing 
skin lesions.

Waheed et al.’s [27] machine learning model uses texture and color information 
to identify and categorize melanoma. Their model has a 96% classifying success 
rate using conventional techniques. Xie and Bovik proposed a skin tumor seg-
mentation technique that combines a ConvNet that generates itself using a genetic 
approach; however, precisely segmenting dermoscopic pictures is still difficult [28]. 
Chakravorty et al. proposed a method for categorizing skin lesions with an uneven 
distribution of colors and structures utilizing the Kullback–Leibler difference 
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between the structural similarity metric and the color histogram. Their model could 
not achieve high accuracy despite the 83% categorization rate [29]. Similarly, litera-
ture reports that the machine learning, deep learning, and various artificial intel-
ligence techniques play vital role in healthcare and medical sectors [17, 18, 30–42].

15.3  METHODOLOGY

15.3.1  Data Acquisition

For the model we designed, we collected a total of 3397 skin cancer photos depicted 
in Table 15.1. Of these, some were obtained from Kaggle, while the rest were sourced 
from the ISIC. These images were combined to create a training dataset of malignant 
versus benign lesions.

All digital input images had three channels since they are RGB images; unfor-
tunately, because of their diverse origins, the photographs had varying formats and 
sizes. Therefore, we scaled all photos to a standard shape that included information 
on the column, channel, and row of each image to allow predictive analytics (224 × 
224). The images were retained in a three-dimensional multichannel array, while the 
labeling data was kept separate in a one-dimensional array that was the attribute that 
the machine learning process used as its objective. Sample images from both input 
image categories are displayed in Figure 15.3.

TABLE 15.1
Original Dataset

Image Dataset Total Images

Benign 1800

Malignant 1597

FIGURE 15.3  Cancerous lesions in different stages of malignancy.
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15.3.2  Data Augmentation

A technique called data augmentation, presented in Figure 15.4, involves making 
modified copies of existing data to inflate the size of a training dataset through small 
adjustments or generating new data points using deep learning techniques like flip-
ping, resizing, and rotating images [43]. These alterations can be made using the 
ImageDataGenerator, which offers various options for customization. As stated in 
[44] and [45], the generator and facility type were randomly selected. To expand the 
training dataset size for the specified job, we included additional photos of charred 
areas and healthy skin and horizontally flipped the images after rotating them. 
This resulted in 9891 additional pictures in the training dataset (Table 15.2) [46]. 
Tables 15.3 present the data augmentation settings. Figure 15.1 shows image differ-
ences after augmentation.

15.3.3  Data Preprocessing

Preprocessing is required for effective medical judgements, diagnoses, and treat-
ments to prepare image data for model input. The objective of image preprocess-
ing is to eliminate noise from the picture [47]. Typically, the picture has noise, 
hairs, etc., and it is necessary to eliminate categorization errors brought on by these 

TABLE 15.2
Dataset after Augmentation

Class Images

Benign 5400

Malignant 4491

FIGURE 15.4  Pre- and postaugmentation images.
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TABLE 15.3
Data Augmentation Settings

SNo Augmentation Setting RANGE

1 Shear Range 0.2

2 Zoom Range 0.2

3 Rotation Range 0.2

4 ZCA Whitening False

5 Width Shift Range 0.3

6 Height Shift Range 0.3

7 Channel Shift Range 0.2

8 Vertical Shift True

9 Horizontal Shift True

disturbances via numerous image processing techniques. For our model, before feed-
ing the images into the deep learning network, we manually trimmed and eliminated 
the unnecessary background. Additionally, contrast enhancement can brighten the 
edge of the picture and increase segmentation accuracy. The size of the database 
was then intentionally increased using rotation and flipping, resulting in a larger 
database. The normalization process was then automatically finished at run-time.

15.3.4 A pplying Deep Learning Techniques

CNN is a deep learning technique for categorization tasks such as image recognition 
that are influenced by the human brain. A  typical ConvNet architecture contains 
multiple levels, where each level generates a two-dimensional array of picture ele-
ments (feature maps) that are used as input by the successive layers [48]. Prior to 
the availability of large datasets such as ImageNet [49], which was made accessible 
around 2010, researchers were unable to train ConvNet architecture due to limited 
data and computing resources.

In the basic ConvNet architecture [50], information is received at the input layer, 
which can be an authentic picture pixel or a modified version of it. The convolutional 
layer applies a filter that moves over the input image and performs convolutional 
operations to create a feature map. The dimensions of the feature map are typically 
reduced using a pooling layer, which focuses on the most important elements of the 
feature map. The ReLu layer applies a nonlinear function to the output of the previ-
ous layer, setting all negative values to zero; then the fully connected layer completes 
the high-level analysis of the patterns that the preceding layers have produced. The 
activations from the layer above are fully connected to the neurons in this layer, 
generating features used to train a ConvNet model that has been trained to extract 
features using a separate classification method. A loss layer penalizes the dissimi-
larity between the actual and predicted labels. Depending on the task, various loss 
functions such as Sigmoid, SoftMax, and CrossEntropy can be used in the last layer 
of the ConvNet. The training parameters for the model are shown in Table 15.4.
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15.3.5 T ransfer Learning

Training a model on a large volume of data and teaching it the model weight and bias 
is the foundation of deep learning. Pretrained weights accelerate the learning pro-
cess of a new network model [51]. In this project, we used transfer learning with fine 
tuning to enhance the model’s performance in the desired domain using pretrained 
EfficientNetV2 and VIT-B16 models. The ImageNet dataset served as the first train-
ing ground for pretrained models and can predict over 1000 classes. We retrained 
the pretrained models for the target task by adding convolutional and dense layers 
and adjusting parameters using fine tuning. The dense layer from the pretrained 
representation’s source task was removed. The convolutional neural network cre-
ation and scaling technique EfficientNetV2 evenly adjusts all depth, breadth, and 
resolution parameters using a compound coefficient. It improves training efficiency 
and parameter effectiveness compared with earlier models. Scaling and neural 
architecture search are used to create this network [52, 30]. ViT-B16 uses the vision 
transformer paradigm in computer vision, which employs multihead self-attention 
without image-specific biases.

The positional embedding patches that the model generates are processed by the 
transformer encoder from the images to understand the characteristics contained 
in the image on both a local and global scale. The vision transformer architecture 
consists of several transformer blocks, each comprising a feed-forward layer and a 
multi-head self-attention layer. The ViT has a higher accuracy rate on a large dataset 
with less training time.

15.4  RESULTS AND DISCUSSION

The goal of this chapter’s study was to identify the most efficient training approach 
for predicting benign or malignant skin cancer by experimenting with various feature 
representations and a diagnostic model using CNN and transfer learning approaches. 

TABLE 15.4
Description of CNN Training Parameters

S. No Parameter Value

1 Image Size 256,256

2 Epochs 100

3 Batch Size 32

4 Learning Rate Le-1

5 Activation in Middle Layer Relu

6 Activation in Last Layer Softmax

7 Loss Sparse Categorical CrossEntropy

8 Optimizer Adam

9 Accuracy Accuracy

10 Train/Test/Cal Ratio 80.10.10
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We used two different techniques to modify the suggested CNN architecture, with 
each method executing over 100 training epochs, and we were recorded and ana-
lyzed the precision and loss per period of each model.

Table 15.5 compares the loss and accuracy of the basic CNN model with those of 
EfficientNetV2 and ViT-B16 on the training dataset, and Figures 15.5(a–c) graphi-
cally display the same. Results showed that all models exhibited a steady rise in 
accuracy and a fall in loss throughout the training process, but EfficientNetV2 dem-
onstrated the best performance with almost 90.41% accuracy.

Table 15.6 compares the performance metrics for the three study models, showing 
shows that EfficientNetV2 using the suggested transfer learning strategy significantly 
improved accuracy to 88.33%. Figures 15.6(a–c) display the confusion matrices and 
ROC curves for each model. Figure 15.7 display the confusion

The transfer learning approach extracts important features from images dur-
ing training, making it an effective alternative to traditional machine learning 
techniques. The recommended approach, which combines transfer learning with a 
EfficientNetV2 model that has already been trained, may thus be utilized in clinical 
practice to determine type of skin cancer.

TABLE 15.5
Training Dataset Loss and Accuracy

No Models Applied Training Accuracy Training Loss Validation Accuracy Validation Loss

1 Basic CNN 92.91% 36.52% 83.84% 33.66%

2 Efficiend Net V2 90.41% 22.18% 87.37% 27.28%

3 VIT-B16 88.80% 23.82% 88.13% 26.03%

FIGURE 15.5 (A)  Training accuracy and loss: basic CNN.
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FIGURE 15.5 (C)  Training accuracy and loss: ViT-B16.

TABLE 15.6
Testing Dataset Performance Metrics

Sno Model Applied Testing Accuracy Precision Recall F1

1 Basic CNN 83.18% 83.72% 83.18% 83.22%

2 EfficientNetV2 88.33% 88.36% 88.33% 88.34%

3 VIT-B16 86.21% 86.42% 86.21% 86.12%

FIGURE 15.5 (B)  Training accuracy and loss: EfficientNetV2.
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FIGURE 15.6 (A)  Confusion matrix and ROC curve: basic CNN.

FIGURE 15.6 (B)  Confusion matrix and ROC curve: EfficientNetV2.

FIGURE 15.6 (C)  Confusion matrix and ROC curve for ViT-B1.
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15.4.1  Data Availability

The dataset developed and utilized for the current investigation will be made avail-
able by the corresponding author upon reasonable request.

15.5  CONCLUSIONS

n our research, we proposed a method for diagnosing skin cancer using computer-
based techniques that was more effective than conventional biopsy. This approach 
allows patients to identify skin cancer without needing to seek outside medical help, 
offering convenience and accessibility. Our diagnostic method employs deep neural 
networks and digital image processing techniques to distinguish between malig-
nant and benign melanoma. We subjected a set of skin cancer photos to an algo-
rithm based on CNNs with various parameters. Among the architectures we tested, 
EfficientNetV2 demonstrated a stable level of success, achieving a diagnostic accu-
racy of 90.41%, which surpassed other architectures; the results from the basic CNN 
architecture were unsatisfactory, highlighting the importance of utilizing advanced 
models for accurate diagnosis.

Our research underscores the critical importance of achieving robust performance 
metrics in skin cancer diagnosis. The ability to accurately distinguish between 
benign and malignant tumors is crucial for patient outcomes and treatment deci-
sions. Misclassifications could have severe consequences, underscoring the need for 
models that strive for state-of-the-art performance levels. EfficientNetV2 emerged 
as the standout performer in our analysis, offering a compelling balance between 

FIGURE 15.7  EfficientNetV2 predictions from skin cancer images.



230� Handbook of Deep Learning Models for Healthcare Data Processing

swift inference times and exceptional predictive accuracy. Its ability to make highly 
accurate predictions while maintaining efficiency in computation makes it a promis-
ing tool for clinical applications.

In conclusion, our research demonstrates the vital role of advanced machine learn-
ing techniques in improving the accuracy and efficiency of skin cancer diagnosis. By 
leveraging state-of-the-art models like EfficientNetV2, we aim to provide medical 
professionals with accurate diagnostic and effective therapeutic options, ultimately 
enhancing patient care and outcomes in dermatological health. Moving forward, our 
method will be tested on more high-resolution images to validate its effectiveness 
and applicability in real-world settings.
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16.1  INTRODUCTION

AI in the health sector is an innovation in health system provision and administra-
tion. According to Snowdon, a digital health framework is a crucial tool for carrying 
forward the agenda of the transformation of healthcare as it presents new options to 
optimize productivity, reach, and treatment effectiveness. This integration is becom-
ing more crucial, especially given how health systems are evolving due to advances 
in technologies and the emerging health issues across the world [1].

Williams observed how COVID-19 highlighted the weaknesses of private health 
systems. The pandemic severely tested market arrangements and governance sys-
tems were severely tested, highlighting the urgent need for solutions to address 
these shortcomings. In this context, AI can be seen as a powerful tool for filling 
the gaps in health service provision and management during such unprecedented 
challenges [2].

Analyzing the failure of health maintenance organizations, Tabriz et al. identi-
fied several insights on how accountable care organizations can use AI to learn 
from mistakes [3]. RAND considered chronic diseases, an important concern 
in America’s healthcare system. Specifically, the author focused on the issue of 
increasing chronic disease rate and the associated costs. AI has the capacity to 
reduce these strains through enhanced disease control by means of data analysis 
and treatment plan [4].

The World Health Organization provides crucial insights into global health crisis 
management, including naming COVID-19 and its virus. This highlights the need 
for global cooperation and the use of technology for administration and control of 
heath difficulties. While AI technologies can play a role in these regards, it is widely 
understood that these technologies can greatly improve public health responses as 
well as expand diagnostic and treatment capabilities [5].

Lastly, Butcher and Hussain uncover the consequences of evolving digital health 
care with the focus on stark outlook of AI technologies. The findings of their litera-
ture review about the future of digital healthcare also demonstrate the need for con-
tinuous innovation and adoption of AI in responding to current and future healthcare 
needs [6, 7]. See Figure 16.1 for some healthcare applications of AI.

16

https://doi.org/10.1201/9781003467281-18


Healthcare Reimagined� 235

16.2  IMPORTANCE OF AI IN HEALTHCARE

AI is transforming healthcare because of its diagnostic precision, optimization of 
patient experience, and reduced error margin [8]. It has become one of the criti-
cal tools in oncology, cardiology, and neurological disorders that helps diagnosing 
diseases faster and more accurately by analyzing complex medical data. AI makes 
it possible to detect diseases at an early stage, optimize resources and enhance the 
efficacy of specific treatments for patients [9].

16.2.1 R adiology and Diagnostic Services

AI has now been fully implemented in medical imaging and enabled high diagnostic 
accuracy as well as faster results. For instance, in oncology, AI has shown excel-
lent performance at differentiating between metastatic breast cancer. Deep learning 
enables identifying cancerous cells in medical images and in some cases even sur-
passes the capabilities of human pathologists [10].

Esteva et al. [11] applied deep neural networks for diagnosing skin cancer and the 
accuracy of the model was close to that of dermatologists, and Rajpurkar and col-
leagues [12] found that deep learning models can diagnose pneumonia from chest 
X-rays at the same level as radiologists. These AI-based applications increase the 
rate and accuracy of diagnosis especially in place that lacks healthcare facilities and 
professional physicians, but imaging is not the only field where AI is valuable; neu-
rological and mental health diagnoses also benefit from AI.

For instance, automated speech analysis allows for estimating the period before 
psychotic disorder develops in an individual identified to be at high risk of devel-
oping the illness. Bedi et al. [13] and IBM Research [14] also noted early on that 
AI could predict biomarkers of neurological disorders such as schizophrenia and 
Parkinson’s diseases for timely treatment. And Chou et al. [15] demonstrated using a 
two-class augmented decision tree to predict diabetes.

FIGURE 16.1  Applications of AI in healthcare.
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The COVID-19 pandemic was influential in expanding the role of AI in medical 
imaging [16]. Gudigar et al. [17] recently applied deep neural network and hybrid 
methods for diagnosing COVID-19 using X-rays and CT scans. Khanna et al. [18] 
highlighted this detailed approach, noting that CT scans and chest X-rays are essen-
tial AI applications in healthcare. A new area of AI, transformers, has improved 
medical imaging to the next level. Transformer architectures were used by Costa 
et al. [19] and van Tulder et al. [20] to distinguish COVID-19 from pneumonia from 
CT and X-ray imaging, proving how crucial AI was in the fight against the pandemic. 
Krishnan et al. [21] employed vision transformers (ViTs) to identify COVID-19 from 
chest X-ray patches, and the AI model outperformed CNNs. Wang et al. [22] put for-
ward a new combined method based on wavelet ridge extraction and biogeography-
based optimization for the automated segmentation of COVID-19 from chest CT 
images. This method surpassed other typical machine learning-based approaches 
for the same diagnostic performance. Lastly, ViTs also outperformed CNNs in dif-
ferentiating between malignant and benign breast tissues [23].

The Nuffield Council on Bioethics highlighted on how AI’s optimal data pro-
cessing and speed ensures early diagnosis and treatment of deadly diseases such as 
cancer and heart diseases. In addition, AI applications are being explored for medi-
cal care delivery in the UK. The use of AI was discussed in the House of Lords as 
it highlighted the importance of implementing the ethical approaches to AI use in 
healthcare [24, 25].

Secinaro et al. demonstrated that AI is instrumental in diagnosing diseases, pre-
dicting patient’s outcome, etc. Oren et al. proposed transitioning from conventional 
radiographic data to clinically relevant endpoints, a significant step forward in medi-
cal imaging. This shift keeps the focus on treatment and patient-oriented care rather 
than just data [26, 27].

16.2.2 P harmaceutical and Medical Research

AI is particularly useful in the analysis of all the very large and complex datasets 
that are available for use in medical research [28]. It also identifies sites of scien-
tific research projects, integrates multiple data sources, and fuels advancement in 
drug development [29]. Pharmaceutical companies are leveraging AI to accelerate 
the development of new medicines. Predictive analytics can be applied within con-
trolled immersive environments to address sensitive issues with scientists; select 
potential voluntary participants for trials, and determine exact models of biology 
processes [28].

AI models facilitate accurate decoding of the complex nature of biological sys-
tems and diseases to improve the specificity of treatment plans [30], and AI has been 
used to forecast interactions between drugs, their side effects, and their efficacy, 
preventing trials from reaching clinical failure and enhancing the transition from the 
laboratory to clinic [31, 32, 33].

AI’s role is not only limited to drug discovery; it plays some part in clinical 
research. The systematic reviews of literature through text mining and machine 
learning to automated issues of identification of studies have opened a new era 
in managing large volumes of literature with improved accuracy [29]. Also, AI 
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tools have been integrated into designing trials, recruiting patients, and managing 
the resulting data [34]. AI application in these fields also enhances the accuracy 
of clinical research in addition to decreasing the overall time and costs incurred 
towards the development of new therapies [35, 36]. AI is also effectively utilized in 
analyzing spike proteins in vaccine development. AI systems can offer components 
within a complex structure and finds the one that produces a rather high immune 
response [36].

16.2.3 R emote Monitoring of Patients

AI has greatly enhanced healthcare delivery in remote patient care, especially 
through the use of remote monitoring systems and telemedicine tools. Of these, 
wearable patient monitoring devices that use AI to track the patient’s vital signs and 
overall health in real time have grown wildly in popularity. These systems supply 
quantity and consistent data, which make an enormous difference for a healthcare 
provider who has to make decisions at that very moment. Baig et al.’s systematic 
review highlights the current state and future prospects for the clinical use of these 
technologies. They note that despite significant potential, concerns about data cred-
ibility and patient data protection must be resolved before the broad application of 
these technologies in clinical practice is possible [37].

AI has also been applied in noninvasive sensors for chronic diseases, especially 
diabetes complications. Kim et al. investigated noninvasive epidermal glucose sen-
sors of blood glucose monitoring that can replace occasional checks. These sen-
sors utilize complex AI applications to analyze data in real-time, making it easier 
for patients to monitor their conditions [38]. This approach illustrates the role of 
AI-based solutions in increasing patient’s control of their health and decreasing 
hospitalizations.

AI for healthcare also has a role in home surveillance systems. Andrea et al. 
proposed a smart sensing architecture of home environments that involved 
constant tracking of health indicators. This system tracked deviations in 
patient status and alerted caregivers, allowing them to respond more promptly. 
Additionally, this AI-power architecture, enables comprehensive care in a home 
environment, improving patient health while reducing the burden on healthcare 
facilities [39]. Smart watches are another device for remote diagnostics. Patel 
and Tarakji illustrated their use for arrhythmia monitoring in a case report in 
which the smartwatch assisted in identifying atrial fibrillation in a patient who 
had suffered an embolic stroke to prove that AI can help in the early detection 
of serious illnesses [40].

In mental health, Sukei et  al. introduced predictive models that identify emo-
tions based on user data collected from wearables. This AI-based approach can be 
used to observe a person’s mental state and provide interventions where required for 
various disorders including depression and anxiety [41]. And Natarajan et al. deter-
mined physiological markers of COVID-19 using wearable devices, demonstrating 
how such technology can assist in early diagnosis, prognosis, and telemonitoring of 
recovery. This was paramount especially in handling patient volumes during periods 
of disease surge and in observing prevention measures [42].
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Constant developments in AI for virtual patient care are opening new opportu-
nities of the constant and remote healthcare, where doctors can monitor and treat 
patients in real time from a distance. However, these innovations raise issues such as 
confidentiality, security, and welfare. These challenges must be addressed to make 
the safe and effective use of these technologies within the general healthcare system 
[37, 38, 41, 42].

One AI platform could personally review the patient’s data and recommend health 
advice, daily/weekly/monthly reminders, and content that could be used for health 
education. It increases patients’ compliance with their prescribed regimens as well 
as their engagement in managing their conditions [34]. AI in electric health records 
(EHRs) also improves patient engagement and overall care delivery. AI-powered 
EHR systems can perform various tasks while data is being entered, including gen-
erating orders, medication prescription, documenting diagnoses and treatment plans, 
reporting laboratory results, and scheduling appointments, minimizing workloads. 
Furthermore, these systems translate patient trends into useful information [43].

Authors of one study found that using technologies such as portals and mobile 
applications to interact with healthcare professionals increases the rates of patient 
engagement rates by up to 60%. Cloud healthcare applications have the capability 
to acquire, preserve, and transmit patient information, allowing users to view data 
anytime and anywhere. These applications offer AI-based consultation advice for 
nonemergency medical issues or remind patients to take their medications and fol-
low up with them. Many health care applications use AI such as ChatGPT to perform 
time-consuming tasks like note taking, report preparation, and summary, saving 
time and reducing operational costs [44].

16.2.4 R ecovery through Robotics and Predictive Analytics

There has been great progress of recovery in patients through innovation and use of 
artificial intelligence and different technologies. They are revolutionizing the con-
ventional rehabilitation processes with higher accuracy, availability and individual-
ized care for patients.

Research shows the practical use of AI in multiple areas within physical medi-
cine and rehabilitation such as interactive individualized health plans, real-time 
feedback during exercise therapy, and physical medicine and rehabilitation therapy 
planning. For example, AI algorithms can automatically monitor the patient’s move-
ments and give corrections instantly, increasing the efficacy of the rehabilitation 
exercises and avoiding the possibility of injury [45]. In the same context, robotics 
in combination with AI are incorporated in sophisticated rehabilitation equipment 
that assists patients with physical disabilities with controlled and repetitive motions; 
these are crucial in motor learning and rehabilitation [46]. Authors found that by 
integrating wearable technology into the rehabilitation processes, the rehabilitation 
results can be enhanced by real-time monitoring and subsequent feedback analy-
sis. Skin-mounted smart gait sensors effectively identified gait events and increased 
the possibility of individualizing rehabilitation [47], and AI-based wearable devices 
are useful sources of information for both the patient and the clinician for making 
changes to the therapy [48–52].
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Furthermore, innovations such as virtual reality (VR) and the metaverse are a new 
trend in rehabilitation. Using VR in therapeutic interventions led to increased engage-
ment and motor function in patients with cerebral palsy; one of the randomized controlled 
trials reaffirmed that VR rehabilitation was far superior to conventional techniques in 
enhancing motor gains [53]. Most rehabilitation exercises can be done at home, and 
advanced technologies such as AI allow for real-time follow-up on set programs and 
exercises. For instance, in stroke, technology for home-based practice better engaged 
clients [54]. In addition, chatbots and digital assistants assist patients in understanding 
their rehabilitation process and complying with the recommended therapies [55].

16.3  CHALLENGES TO AI UTILIZATION IN HEALTHCARE

16.3.1 E thical and Social Concerns

AI in healthcare has brought in many new innovations to care delivery processes, but 
its use presents significant ethical and social issues that need to be resolved.

Transparency and interpretability are major ethical concerns in healthcare AI. 
Since AI systems make critical decisions, it is important to understand how these 
decisions are made. Self-explaining neural networks have been developed to make 
these systems more interpretable by providing explanations for their predictions. 
This is important for building trust among clinicians and patients [56]. However, 
achieving balance between the number of features in the model and its interpret-
ability remains challening.

The cognitive AI systems are intended to work with large amounts of data and 
make predictions that may affect clinical operations, but they are only beneficial if 
these system do not reinforce bias or come up with wrong suggestions. A review of 
explainable AI methods reveals that despite enhancing the interpretability of out-
comes, these technologies pose new challenges in ethics [57].

16.3.1.1  Social and Practical Challenges
Social issues are closely related to privacy and data security concerns with AI in 
healthcare. Patient data is the main input for AI systems, so information security is 
critical. The threat of hacking, and thus compromising the confidentiality of personal 
health information, is still an issue. Such risks warrant proper data protection measures 
and compliance with privacy regulations to reduce the odds of a data breach [58].

As AI technologies perform more administrative and diagnostic tasks, some 
healthcare personnel are at risk of being replaced or changing roles. This shift brings 
regarding employment and retraining challenges. To mitigate these social conse-
quences, it is essential to accompany AI implementation with workforce adjustment 
programs and relevant training [59].

16.3.2 T echnical Challenges

Similarly, AI in healthcare brings technical issues that define the efficiency and the 
usage of progressive solutions. Among these challenges are data quality and integra-
tion, limitations in algorithms, and users’ training.
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One of the most difficult technical issues that have to be addressed during AI 
implementation is the data quality for training the algorithms. Some of the prob-
lems include incomplete data, biased data, or random samples that can result in low 
accuracy as well as instability in the model’s predictions [60, 61, 62]. Kelly et al. 
describe the same patterns, and they note that incorporating AI solutions in the cur-
rent healthcare systems is challenging due to the lack of system interoperability and 
the overall lack of harmonization across systems [63, 64].

Choudhury and Asan speak about training and human factors effects on imple-
menting AI solutions and found that excessive training can result in resistance and 
unsatisfactory usage of AI-related resources. It is therefore crucial for the healthcare 
practitioners auditing and overseeing AI tools in practice to receive the best training 
to enhance a practitioner’s successful clinical application of the tools [65].

Tachkov et  al. establish certain difficulties for Central and Eastern European 
countries, such as lack of high technical support, and certain reluctance towards 
change [66]. These barriers are often due to differences in regional competence and 
capacity, where scalability of AI solutions may be impacted. Joshi describes other 
technical concerns including security of patient’s information and compatibility 
between AI systems and the current EHR databases [67].

16.3.3 M anagement Challenges

The implementation of these technologies needs to be safe, fair and ethical. Therefore, 
proper governance of AI in health services is crucial and sensitive.

The critical issue is to identify the major governance issues and implement 
detailed regulatory frameworks for AI in healthcare. The WHO has provided gen-
eral and specific recommendations on the ethics and governance of AI in the health 
sector. They emphasize the importance of managing potential risks while develop-
ing policies on the use of this technology [5]. This entails developing guidelines for 
transparency, accountability, and fairness. The legislation in the European Union 
include the European Commission’s Artificial Intelligence Act, which is seen as a 
progressive effort toward the regulation of AI technologies. This act has the potential 
to establish legal parameters concerning AI so that its high-risk applications such as 
in the medical field are implemented with maximum safety standards and transpar-
ency [68].

Reddy et al. provide insights into a four-tiered framework for managing AI in 
healthcare, involving ethical review boards, data governance committees and techni-
cal advisory panels [69]. This multitiered system addresses data protection, AI bias, 
and system efficiency. AI tools in large health systems face challenges with integra-
tion and implementation as well. Marwaha et al. mention that successful adoption of 
digital health tools requires integrating the AI applications within current practices, 
ensuring consistent application, and addressing interoperability challenges. These 
factors are important for the effective use of intelligent technologies in clinical envi-
ronments [61].

Data accessibility of data and privacy is one of the issue that needs to be closely 
addressed especially for artificial intelligence. The GDPR policy gives guidelines 
on how data access can be regulated and patients’ information protected in Europe. 
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Forcier et al. describe how GDPR principles can help policymakers regulate data 
access, balancing freedom with privacy [70]. AI systems have to be regulated in a 
way that would properly fit data protection regulations to ensure continuity of the 
public’s trust and to protect patient data.

16.4  CONCLUSION

AI clearly has extensive application in the healthcare industry. All the technologies 
we have discussed here were developed to support medical imaging and diagnos-
tics, fight against disease outbreak, deliver virtual consultations, increase patient 
engagement and adherence with treatment plans, reduce the burden of paperwork 
for healthcare providers, encourage the development of new drugs and vaccines, 
and monitor patient compliance with exercises. AI is making its way into healthcare 
but must overcome a range of technological, moral and regulatory challenges; these 
include concerns about data security and privacy because AI systems use private and 
sensitive data regulated by legal frameworks. The existence of low quality in cur-
rently available health data, and the inability of AI to model some aspects of human 
character, may restrict the applicability of AI in solving issues.

16.5  FUTURE SCOPE AND DIRECTIONS

Healthcare in the 21st century has made abundant use of AI as the technology opened 
vast opportunities throughout diagnostics, patient care, and medical research; few 
promising avenues are left untouched and underdeveloped. We believe that AI in 
the future will play a substantial role in achieving the principles of personalized 
medicine by processing huge amounts of patient data, expanding the potential for 
prescribing treatments targeted at individual patients’ genetic characteristics and 
predicting with greater accuracy patient responses to therapeutic interventions. 
Advancements in algorithms and models for informative analytics and machine 
learning will improve and facilitate disease prevention and improve long-term out-
comes of diseases. In addition, AI in decentralized and remote care services will 
enhance available solutions in deprived and rural regions. Wearable smart devices 
and telemedicine offer real-time health tracking and instant therapy at the first signs 
at unusual clinical signs. This expansion is driven by the growing trend in home-
based healthcare, which relieves congestion in central hospitals and increases patient 
convenience.

AI in healthcare can only succeed if people are confident in the technologies, 
particularly health care providers. Future work must therefore target disseminating 
comprehensive AI models that operate in a legally recognizable environment and 
ensure compliance with adequate data protection regulations to minimize the likeli-
hood of health information abuse. Furthermore, there continues to be a significantly 
huge place for AI in medication development. From expediting drug discovery to 
enabling the online trials of new treatments, AI reduces the time and money required 
to create new medicines. In addition, the fields of genomics and bioinformatics are 
valuable because AI algorithms can analyze complex genomes and identify new 
potential targets for treatment.
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17.1  INTRODUCTION

Aspect-level text mining focuses on interpreting and categorizing sentiment expres-
sions inside a text based on certain features or entities addressed (B. Liu 2012). This 
is especially useful in circumstances such as product reviews, where people express 
varying feelings about distinct product features or services.

The intent of aspect-level sentiment analysisis not only ascertain the overall sen-
timent (positive, negative, or neutral) of a given text but also establish correlations 
among these sentiments and specific attributes or aspects. In a restaurant review, for 
example, a person might express great feelings about the cuisine but bad feelings 
about the service. To solve the complexity of aspect-level analysis, researchers have 
resorted to neural network models, which have shown efficacy in extracting con-
text, semantics, and sentiment information from textual data. With their capacity to 
develop hierarchical representations and detect tiny verbal signals, neural networks 
are ideal for this task.

In the context of aspect-level sentiment analysis (Wan et al. 2024), neural models 
(Shaukat et al. 2020), recurrent neural networks (RNNs) (Peng et al.,2017), convo-
lutional neural networks (CNNs) (Kim 2014), and more recently transformer-based 
models (Xu et al. 2022) such as BERT and its derivatives are frequently used. These 
models can learn to encode and understand the sentiment associated with different 
aspects by considering the contextual information surrounding the aspects in the 
text. Aspect-level analysis typically involves a set number of steps. Aspect extraction 
involves identifying and extracting the text’s aspects or entities of interest. This step 
is crucial for pinpointing what the sentiment is about. Then, sentiment classifica-
tion assigns sentiment labels (e.g., positive, negative, neutral) (Hussein 2018) to each 
aspect based on its context; the operational models acquire the ability to comprehend 
the correlation between words and contexts to generate these predictions.

Finally, models are trained and fine-tuned. The model is trained on labeled data to 
classify the textual content based on the aspect term and evaluate the polarity score. 
This introduction emphasizes the importance of aspect-oriented sentiment analysis 
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and the use of deep learning models to enhance performance. These models can pro-
vide more fine-grained and actionable insights from text data, making them valuable 
tools for businesses and researchers seeking to understand and leverage sentiment 
information at a granular level.

17.1.1 M odels

Deep learning sentiment analysis is a discipline that is constantly expanding, and 
academics have investigated a wide range of research difficulties and obstacles. 
Notably, research challenges in sentiment analysis using deep learning models have 
arisen. In fine-grained sentiment analysis, deep learning models struggle with subtle 
sentiment differences like sentiment strength or sentiment in particular areas of a 
text. Regarding multilingual sentiment analysis, developing deep learning models 
capable of handling sentiment analysis in various languages and cross-lingual senti-
ment analysis remains a serious research challenge.

Other relevant facets of sentiment analysis include context analysis, understanding 
and recording sentiment changes based on the context of a statement or document, 
including sarcasm and irony identification, and successfully handling negations and 
reversals in emotional expressions. Emotion analysis involves going beyond simple 
sentiment (positive, negative, and neutral) to identify and evaluate emotions such as 
joy, rage, fear, and sadness as well as nonliteral representations of sentiment such 
as sarcasm and comedy. Aspect-based sentiment analysis involves identifying senti-
ment related to certain characteristics or entities in a text such as product features 
or services in evaluations. Handling noisy text data is also always an issue, espe-
cially challenging with data from social media, user-generated material, and casual 
language, where grammar and spelling norms are frequently disregarded. Another 
common challenge is data imbalance, minimizing bias in models to ensure fair and 
representative forecasts. Model interpretability refers to improving deep learning 
models’ interpretability and explainability in the context of sentiments and also fre-
quently an issue. Domain adaptation refers to adapting sentiment analysis models 
to different domains or industries with limited labeled data. In terms of assessment, 
researchers need appropriate evaluation criteria for different sentiment analysis 
tasks, including factors such as imbalanced data and level of detail.

In terms of analysis types, cross-domain sentiment analysis entails creating 
models that can adapt to diverse domains, and temporal sentiment analysis involves 
examining how sentiments change over time and detecting patterns and shifts in sen-
timent within a specific time frame. Multimodal sentiment analysis refers to working 
text from additional modalities such as photos, audio, or video to provide a more 
complete understanding of sentiment. Real-time sentiment analysis models, mean-
while, possess the ability to evaluate and analyze real-time streams of textual data 
such as social media updates or news articles. Finally, addressing ethical challenges 
in sentiment analysis, such as data security, privacy concerns, and potential abuse of 
sentiment analysis technologies, will be critical.

These research problems reflect the evolving state of sentiment analysis using 
deep learning models, as well as ongoing efforts to enhance the accuracy and 
application of sentiment analysis in many scenarios. Researchers are persistently 
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studying these matters to improve the current level of expertise in sentiment analysis. 
Understanding the relationship between phrases, sentiment words, and classification 
models is essential for performing sentiment analysis at the feature level.

Aspect-term analysis employs a number of common strategies. Bag-of-Words 
(BoW), the fundamental and commonly employed baseline approach, involves 
representing each input phrase as a vector of word frequencies (HaCohen-Kerner, 
Miller, and Yigal 2020). By incorporating aspect-related keywords or phrases, the 
BoW model can be extended to consider sentiment particular to certain aspects. 
Nevertheless, BoW models cannot consider word order or context, which may render 
them inadequate in capturing nuanced emotions.

Advanced RNNs can identify and understand sequential patterns within textual 
data; the models can be used to incorporate aspect information and capture senti-
ment that is distinct to each aspect. In contrast, conventional RNNs are prone to the 
vanishing gradient problem, which limits their ability to effectively capture and rep-
resent long-distance connections. Bi-RNNs analyze text in both directions to extract 
contextual information from the input sequence; it is useful for applications like 
facet-level sentiment analysis.

Long short-term memory (LSTM) is an a RNN that can manage long-distance 
dependencies and is appropriate for jobs like sentiment analysis. It is intended to 
solve the vanishing gradient problem associated with traditional RNNs (Kane et al. 
2021). The gated recurrent unit (GRU) can manage long-term dependencies, but it 
has a simpler structure and fewer input methods. While useful for sentiment analy-
sis, it can also improve computing efficiency (Trisna and Jie 2022). Transformers 
have exerted a significant impact on sentiment analysis, encompassing models like 
BERT, GPT, and ROBERTA. These models utilize attentional strategies to retrieve 
information within a certain context and have undergone extensive training on large 
collections of text, enabling them to excel in various natural language processing 
tasks (Xu et al. 2022).

Attention mechanisms can be utilized in other neural networks to emphasize 
important keywords or phrases in the incoming text. By emphasizing crucial contex-
tual information, this method enhances the efficacy of the sentiment detection model 
(Wang et al. 2016). Attention-based techniques are becoming increasingly common 
in sentiment analysis tasks. Attention-based algorithms in sentiment prediction can 
effectively prioritize significant words or phrases associated with the target attribute 
and award them higher weights. By including crucial contextual information, these 
models enhance comprehensibility and capture sentiment that is distinctive to cer-
tain aspects. Hierarchical models incorporate numerous layers of neural networks 
to analyze emotions at various granular levels (for example, phrase and document).

CNNs have been effectively employed in text categorization applications such as 
sentiment analysis to extract specific local traits and patterns associated with a par-
ticular element. However, they have difficulties capturing long-term dependencies 
and contextual information (Zhou and Long 2018). Ensemble models combine the 
results of multiple neural network models to enhance the overall accuracy of emotion 
analysis. One such approach is to combine LSTM and CNN models to leverage the 
advantages offered by each. Meanwile, conditional random field (CRF) is commonly 
employed in combination with other models for aspect-based sentiment analysis. 
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CRF models can record sequential dependencies and incorporate aspect-specific 
information when evaluating the entire phrase and can represent label interdepen-
dencies (Dalal Hardik 2017).

Selecting a neural network model for sentiment analysis depends on the specific 
objective (such as document-level, surface-level, or perceptual sentiment analysis) 
and the characteristics of the text input (such as a concise social media post or a 
lengthy remark). Researchers and practitioners often conduct experiments using dif-
ferent models and architectures to determine the most effective methods for mea-
suring different emotions (Natural Language Processing and Chinese Computing 
2020).

17.2  LITERATURE SURVEY

When conducting text analysis, it is essential to examine the connections between 
phrases, aspect-oriented terms, and the techniques used to categorize them. Multiple 
deep learning models exist for aspect-level sentiment analysis, but these models 
possess numerous drawbacks. Some techniques exhibit rigidity and lack adequate 
emotional vocabulary. The Lexicon-Enhanced Attention Network Model (LEAN), 
proposed by Ren et al. (2020), can be used to address this problem. LEAN utilizes a 
combination of lexicon-based information and an attention mechanism to effectively 
analyze sentiment at the aspect level. This approach enhances the precision of text 
analysis specifically at the aspect level. The model is trained using backpropaga-
tion, and the loss function is constructed for each phrase where xi is the intended 

probability and xi
j^  is the estimated distribution of the sentence. The loss function 

is generated as
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where i the list is the word in documents, j is the index of the file, y  is the regulariza-
tion term, and 0  is the set of criteria.

The conventional LSTM model failed to capture crucial components in senti-
ment phrase classification; now, attention is being used for evaluating the correlation 
between the context and the essential components of the sentence. The attention-
based LSTM network (M.Z. Liu et al. 2021) combines the aspect word vector with 
the input word vector (Li et al. 2021) to incorporate all relevant information from 
the feature terms. The attention process generates a weighted hidden representation 
denoted as r, along with an attention weight vector (Zhou and Long 2018). The ulti-
mate sentence representation is calculated as follows:

	 k w r w kp q n
* ( )= +tank � (17.2)

where k d* ER , wp, and q are the computation criterion.
Hyun, Cho, and Yu (2020) employed a two-step methodology involving pre-

annotation and crowd annotation to address the challenge posed by the scarcity of 
extensive datasets in aspect-level opinion mining. Using car text data, this approach 
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effectively evaluates sentiment. The lexicalized Domain Ontology and a Regularised 
Neural Attention Model (ALDONAr) increased the accuracy of sentiment analysis, 
specifically in feature identification; this approach demonstrated efficacy in encod-
ing domain-specific information and textual associations (Smetanin and Komarov 
2021).

A neural attentive network model demonstrated superior performance to that of 
previous baseline models in cross-domain sentiment categorization at the aspect 
level. Additionally, it effectively addresses aspect-level sentiment analysis across 
many languages. Language-independent sentiment analysis aids the model in identi-
fying pertinent segments within the text. The Lexicon-Aware Word-Aspect Attention 
Network is an advanced deep learning model designed to extract sentiment informa-
tion related to particular aspects in social networking for the purpose of sentiment 
categorization. Social networking services utilize concise and informal information 
in multiple language. This model outperforms other standard frameworks in terms 
of reliability (Studiawan, Sohel, and Payne 2020).

17.2.1 M ethodology

17.2.1.1  LSTM
The LSTM model comprises a cell memory and three gates (Tang et al. 2016), input, 
output, and forget (Zhou and Long 2018). The value is kept in the cell at constant 
time intervals. The gates manage the transmission of knowledge from one part to 
another of the cell. The forget gate is responsible for choosing whether to retain or 
discard information by comparing the values (0,1) of the previous and current states. 
If the value is 1, the information will be kept; otherwise, the information will be 
deleted. The input gate is in charge of storing new information in the existing state. 
The output gate assigns a binary value (0 or 1) to a specific piece of information in 
the current state, serving as output. This enables the model to retain the relevant 
information in the current state.
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where σ is the sigmoid activation function and O represents element-wise multipli-
cation. W and d are weight and bias, respectively, corresponding to different compo-
nents of the network model. The superscripts in the weight matrices (Wp, Wr, etc.) 
indicate which components belong to all three gates. The subscript indices (X, h, d) 
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represent the input type (X: word embedding, h: hidden state, b: aspect embedding); 
t represents the current time step in the input sequence.

17.2.2 LSTM  with Aspect Embedding

This architecture enables the network to concentrate on specific sections of the input 
sequence that are more crucial for the task at hand. During processing, a model assigns 
various weights or priorities to distinct sections of the input sequence. To reflect the 
context of each word, the input phrase is encoded using word embedding techniques. 
The encoded input sequence from LSTM encoding is then fed into an LSTM layer. 
The model learns to interpret the input sequence while simultaneously acquiring and 
maintaining important information across long distances. The attention mechanism 
is used to identify the significance or relevance of each input piece in the sequence.

The attention mechanism assigns attention weights to each element depending on 
its contextual information and resemblance to the model’s present state. The atten-
tion weights are used to construct a weighted sum of the input sequence items, with 
greater weights assigned to the more significant elements. The attentive or concen-
trated representation of the input sequence is represented by this weighted sum. The 
attended representation is subsequently sent into the network’s subsequent layers for 
further processing, such as decoding or classification tasks.

In machine translation, for example, the attended representation can be utilized to 
construct the translated output sequence. An attention-grabbing LSTM can handle 
long and complicated input sequences well by focusing on the most important sec-
tions of the sequence at each phase of processing. This enables the model to make 
better judgments and increases its overall performance on various NLP tasks. To 
solve the issue that ordinary LSTM cannot identify the crucial section for aspect-
level sentiment categorization, the diligence mechanism captures the key words of a 
phrase in response to a particular aspect.

17.2.3 A ttention-Specific LSTM with Aspect Embedding

The main objective of this model is to detect the sentiment polarity toward specific 
characteristics or entities in text.

It integrates aspect embeddings to the basic attention-based LSTM model, which 
captures aspect-specific information (Xu et al. 2022). In these models, the input text 
is initially encoded using word embeddings to determine the meaning of each word. 
Aspect embeddings are also used to express the target aspect; aspect embeddings use 
pretrained models to collect aspect-based information. The encoded input sequence 
is transmitted to an LSTM layer that analyzes it and collects contextual information 
and word dependencies.

At every stage of the LSTM, an attention mechanism is employed to calculate 
attention weights for the words in the input sequence based on their significance to 
the desired objective. By comparing the aspect embedding with the encoded word 
representations, the attention weights are calculated. This stage enables the model 
to concentrate on words that are more pertinent to the target attribute. The attention 
weights are utilized to generate a context vector that captures the aspect-specific 
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information in the input sequence by calculating a weighted sum of the word rep-
resentations; the context vector is a weighted mixture of word representations, with 
larger weights given to words related to the target aspect.

17.2.4 T arget-Based LSTM

This model was created particularly for sentiment analysis and opinion-mining activi-
ties. The TB-LSTM model accelerates the power of LSTM with target-specific context 
analysis that determines the sentiment of a given text depending on sentiment toward 
a certain target or aspect within the text. This method enables the model to capture the 
target’s context and sentiment orientation within a statement. The TD-LSTM archi-
tecture is made up of two major components: the target-dependent LSTM (Vo and 
Zhang 2015) and the target-dependent attention. The target-dependent LSTM models 
the sequential information in the phrase as well as capturing sentiment information 
about the target words; this method is repeated for each word in the phrase, allowing 
the model to extract context dependencies and emotion. Target-dependent attention 
focuses on the target word while producing sentiment predictions and computes the 
significance of each word in the phrase about the target term.

The similarities between the word representations and the target representation are 
used to compute the attention weights, which are then utilized to weight the LSTM’s 
hidden states, providing greater weight to words that are more relevant to the objective. 
The model efficiently captures sentiment information connected to a certain target 
within a phrase by combining the target-dependent LSTM and the target-dependent 
attention. This method enables the model to produce fine-grained sentiment predic-
tions by considering the sentiment orientation of many targets in the same phrase. It 
has been demonstrated to attain cutting-edge performance on a variety of sentiment 
analysis benchmarks, paving the way for future research on target-dependent senti-
ment analysis and aspect-based sentiment analysis tasks. Because of its capacity to 
capture target-specific sentiment inside a phrase, it is a beneficial model in applications 
such as sentiment analysis in social media, product evaluations, and online debates.

17.2.5 T arget Context-Specific LSTM

The TC-LSTM neural model was designed specifically for sentiment analysis and 
opinion mining tasks, with an emphasis on capturing the interaction between tar-
get words and their surrounding context. The TC-LSTM model addresses the limi-
tations of prior methods by explicitly delineating the connections between target 
words and their surrounding context words. The approach considers both the context 
of the word being analyzed and the word itself in order to more accurately capture 
the intricate sentiment and context-specific characteristics of sentiment analysis. 
This design strongly depends on the context attention mechanism and the target-
dependent LSTM. The model is tasked with representing the sequential information 
within the sentence, taking into account the sentiment.

During each time step, the LSTM cell produces a fresh hidden state and cell state 
by utilizing the word representation and the previous hidden and cell states as inputs 
(H. Liu et al. 2024). The model can acquire the ability to represent the emotional 
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information linked to the target word by understanding the relationships between 
words in the phrase. The context attention method enables the model to selectively 
concentrate on the pertinent context words that encompass the target word. The 
attention weights are determined for each context word based on their degree of 
linkage to the target word. The attention weights determine the significance of each 
context word in the task of sentiment classification. This can be achieved by care-
fully considering the contextual terms. The model employs external memory cells to 
store and retrieve information pertaining to the target property. The system captures 
and stores information about long-term connections and emotional data related to 
certain components by utilizing memory cells and a recurrent neural network. The 
recursive neural network used in aspect-based sentiment analysis incorporates exter-
nal memory cells to store and retrieve aspect-specific information from the input 
sequence (Peng et al. 2017). The system utilizes numerous tiers of memory to store 
emotional data on different characteristics. The proposed deep memory network out-
performs current baseline approaches in aspect-categorization.

17.2.6 �R egularized Neural Attention Model with a  
Lexicalized Domain Ontology

LDO-RNAM is an attention-based model that uses a lexicalized domain ontology 
to encode aspect-specific knowledge and sentiment relationships. The regularized 
neural attention model collects context and sentiment information from the text and 
categorizes it into three major components: aspect extraction, sentiment categoriza-
tion, and domain ontology regularization. The components for aspect extraction rec-
ognize and extract aspects from input texts. The sentiment classification component 
predicts the polarity of each aspect’s emotion. The domain ontology is used by the 
regularization component to refine sentiment predictions by adding domain-specific 
knowledge. The performance of this method is compared with numerous baseline 
models using a real-world dataset. The findings revealed that LDO-RNAM outper-
forms the baseline models in terms of accuracy.

17.2.7 I nteractive Lexicon Aware Aspect Attention Network

This model deals with aspect term classification with context-aware specific term 
identification. It performs lexicon attention operations to map the relation vector rep-
resentation from sentiment-oriented context information. This model imposes this 
information to train the model to predict the correct result.

17.3  RESULTS AND DISCUSSION

The LEAN model for aspect-level sentiment analysis evaluated the accuracy by cal-
culating the total number of predicted values to the total number of test data (Ma 
et al. 2019). The accuracy is calculated as

	 Accuracy
TS Number of true predicted sample

TD Number of To
=

( )
ttal test dataset( )

� (17.9)
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When comparing the LEAN model to the restaurant dataset, there were no notable 
improvements; however, for the laptop dataset, the accuracy increased by 0.8%. 
With the LSTM model, accuracy increased for restaurants and laptops by 0.04% and 
0.07%, respectively. TB-LSTM, TC-LSTM, AE-LSTM, and ASAE-LSTM showed 
respective improvements of 0.03% and 0.05%, 0.03% and 0.05%, 0.02% and 0.04%, 
and 0.19% and 0.05% for the two datasets. Additionally, AE-LSTM and ASAE-
LSTM demonstrated improvements of 0.01% and 0.01%. All lexicon-based mod-
els performed better for all the datasets with baseline methods (Ren et  al. 2020) 
(Table 17.1).

17.4  CONCLUSION

The combination of lexicon-based data and attention processes has significantly 
improved sentiment analysis. The attention model outperforms current models in sen-
timent categorization based on aspect. Aspect-embedding LSTM captures sentiment 
toward the target aspect within the input sequence, with accuracy varying depending 
on the dataset, task, and baseline models. ASAE-LSTM merges aspect embeddings 
and attention approaches for faster sentiment polarity. Deep learning models have 
greatly enhanced aspect-level sentiment analysis by successfully absorbing contextual 
information, recognizing intricacies, and generating cutting-edge results. However, 

TABLE 17.1
Comparison of Existing Deep Learning Models over Different Baseline Models

Model Baseline Dataset Accuracy

LEAN LSTM, TB-LSTM, TC-LSTM, 
AE-LSTM, ASAE-LSTM

Restaurant
Laptop

79.1
73.7

ASAE-LSTM LSTM, TB-LSTM, TC-LSTM Restaurant Laptop 77.2
68.7

TB-LSTM, RNN, Target-dep Twitter 70.8

TC-LSTM, 71.5

LSTM 66.5

LISA RNN Twitter 71.1

LA-WAAN LSTM, AE-LSTM Restaurant 
Laptop

80.95 
72.37

ALDONAr LSTM SemEval 2015
SemEval 2016

83.8
87.1

LDO-RNAM LSTM, TB-LSTM SemEval 2014 
Restaurant Laptop 
SemEval 2015 
Restaurant Laptop

84.8
82.5
82.4
85.1

IL-AANM LSTM, TB-LSTM Restaurant 
Laptop 
Twitter

81.25 
75.85 
76.71
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problems such as data scarcity, aspect extraction accuracy, and model interpretability 
persist. Future research will look on methods for increasing data efficiency, resolv-
ing interpretability difficulties, and improving domain adaptability capabilities. The 
changing environment of deep learning and natural language processing provides 
promise for new advancements in aspect-level sentiment analysis.
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18.1  INTRODUCTION

Every day, millions of photos are created. Each picture must be classified before 
it can be processed, making the process faster and requiring less effort. It is much 
simpler for humans to assign categories to photos than it is for computers to do so. 
A  camera positioned high above the area of interest that captures and processes 
pictures constitutes the essential components of a simple categorization system [1].

Within the realm of healthcare, photos aid in tasks such as the detection of tumors, 
tracking the progression of diseases, and the classification of cells. Likewise, in the 
agricultural sector, photos contribute to the monitoring of crops and the identifica-
tion of invasive insects [2]. The transportation domain benefits from image analysis 
for tasks like vehicle categorization, analyzing traffic flow, and determining parking 
occupancy. Throughout these multifaceted processes, the core function at play is 
image classification.

The process of classifying pictures into various groups based on their shared 
similarities is known as classification. Through this classification, we acquire a con-
venient method for understanding and evaluating our environment. However, it is 
not always straightforward to categorize an image, especially when it contains noisy 
or unclear elements. Users interact with a database in the classification system, and 
this database contains specific patterns or images that have been defined or are yet to 
be classified [3]. Image classification is not only a challenging but also an essential 
issue for a wide range of applications. In such cases, recognizing an object depicted 
in an image can be quite difficult, especially when the image has noise, background 
clutter, or poor quality. Furthermore, the complexity of this task increases when the 
image contains multiple subjects. Therefore, it can be asserted that the most crucial 
aspect of image classification is identifying the features present in an image.

Image classification, a field of study that has gained prominence in recent times, 
represents one of the foundational issues that computer vision must address and 
serves as the cornerstone for various subfields of visual recognition [4]. Improving 
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the performance of classification networks often results in elevated application lev-
els, as evidenced in domains such as super-resolution technologies, video categoriza-
tion, object tracking, object recognition, and human posture estimation. Enhancing 
the progress of computer vision involves several steps, one of which is advancing the 
technology used for image categorization. The primary stages of this process include 
data preparation, feature extraction and representation, and classifier creation.

Artificial neural networks have been a consistent research focus for addressing 
challenging classification tasks, such as image recognition and segmentation [5]. One 
of the notable strengths of these algorithms is their ability to handle diverse problems 
by employing similar architectures. To achieve more precise, effective, and rapid cat-
egorization of land cover objects, various classification algorithms, including object-
based, pixel-based, sub-pixel-based, and patch-based methods, have been proposed 
and utilized in remote sensing. Patch-based classification, due to its straightforward 
yet reliable performance, has recently garnered significant attention.

A CNN is like a team of investigators that helps analyze evidence, such as images 
or videos, to solve a mystery. The team consists of multiple layers of investigators, 
each with a specific role [6]. The first layer looks at the evidence closely, like a mag-
nifying glass, to identify basic features. The second layer examines the features iden-
tified by the first layer and looks for patterns, like a detective looking for clues. The 
third layer analyzes the patterns found by the second layer and makes connections 
between them, like a detective piecing together a theory. The final layer presents 
the conclusions drawn from the analysis, like a detective reporting their findings 
to the lead investigator. Together, the CNN team works to uncover the truth hidden 
in the evidence, helping to classify objects, recognize faces, or even detect fraud.

Patch-centric techniques have gained popularity across various fields, especially 
in medical visualization. These versatile approaches are used for tasks such as image 
partitioning, noise reduction, super-resolution, examination, diagnosis, alignment, 
irregularity identification, and synthesis [7]. They excel at examining images locally, 
capturing nuances and providing valuable insights. Patch-based methodologies 
effectively handle complex and heterogeneous information, making them suitable 
for segmentation, diagnosis, and aberration detection. The use of localized image 
patch dictionaries has also gained traction, aiding tasks such as disease classifica-
tion and tissue segmentation. Advances in computational power and the availability 
of large-scale datasets have further enhanced the performance and generalization 
capabilities of patch-based techniques [8]. They have become essential tools in medi-
cal imaging, transforming tasks and contributing to advancements in patient care. 
Frequently, patch-based dictionaries are commonly used in conjunction with pattern 
recognition methods to accurately and easily model complex anatomical structures.

Image content representation includes not only the global image and localized 
voxels but also extends to patch-level details. It has been demonstrated that this level 
of abstraction works well for image processing tasks, including augmentation and 
denoising, as well as for extracting or classifying image features using convolutional 
kernels and CNNs. The CNN stands as a significant achievement in the effort to 
mimic the mammal visual cortex using artificial neural networks [9]. CNN-based 
frameworks have indeed surpassed human performance in several areas, such as 
semantic and instance segmentation, image captioning, activity sign location, and 
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more. CNN’s adaptability in learning hierarchical patterns and features from data 
makes it a versatile tool in the field of machine learning and artificial intelligence 
research.

18.2  RELATED WORK

The authors of [10] introduce a novel approach to image classification using a hier-
archical patch-based CNN, which effectively combines both local and global con-
textual information. Traditional patch-based CNNs often encounter difficulties in 
striking the right balance between local and global feature extraction. To address 
this issue, the authors propose a hierarchical patch embedding module that empow-
ers the model to effectively learn both local and global features from the input 
images, thereby resulting in improved classification performance. The authors also 
present a novel training strategy that combines data augmentation and transfer learn-
ing to improve generalization. Experiment results show the proposed approach out-
performs baseline models, achieving state-of-the-art performance on the CIFAR-10 
dataset, with greater robustness to transformations. This paper marks a noteworthy 
advancement in image classification using hierarchical patch-based CNNs.

The examination of breast tissue samples through histopathology is crucial for 
accurately diagnosing and categorizing breast cancer. However, developing precise 
classification systems capable of correctly distinguishing between different types of 
breast tissues remains a significant challenge. In [11], the authors aimed to address 
this issue by proposing a novel deep learning model for automated classification 
of histopathological breast images using a combination of CNN and patch-based 
classification. The proposed approach, called the patch-based classifier (PBC), uti-
lizes OPOD and APOD modes to predict the class labels of individual patches and 
entire images, respectively. The effectiveness of this method was evaluated using the 
ICIAR 2018 breast histology image dataset, achieving high accuracy rates of 77.4% 
and 84.7% for four and two histopathological classes, respectively, in the patch-wise 
classification mode. Additionally, APOD accuracies were 90% for four-class and 
92.5% for two-class classification on the split test set. These findings suggest the 
potential of the PBC model for accurate and efficient classification of histopathologi-
cal breast images.

Skin cancer detection using dermoscopy images is challenging due to similarities 
among classes and variations within classes. Most existing methods use deep CNNs 
that extract features from full-resolution images, but this leads to information loss 
when scaled down. Limited availability of dermoscopy images also hinders model 
development. The author of [12] proposed a method presents a notable advancement 
in automated skin cancer detection, showcasing the potential of patch-based feature 
extraction and kernel PCA in enhancing accuracy during dermatoscopic image anal-
ysis. They extracted features from various patches within a dermatoscopic image. By 
leveraging a pretrained CNN model, they intelligently combined these patch-based 
features to retain intricate details. To further enhance feature selection, they applied 
kernel principal component analysis to identify the most critical features. Then, they 
used a feed-forward neural network for skin cancer detection, relying on the chosen 
features. Experimental outcomes confirmed the efficacy of this technique since it 
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demonstrated impressive performance when contrasted with current best practices 
for skin cancer classification. Moreover, by comparing contemporary pre-trained 
CNN models, they gained insightful knowledge regarding the models’ applicability 
for this particular task.

The authors of [13] present a novel approach called PIP-Net (Patch-based Intuitive 
Prototypes Network) to enhance the interpretability of image classification models. 
The authors developed a self-supervised model for image classification that yields 
easily interpretable results by acquiring knowledge of archetypal components. The 
prototypes generated through this approach demonstrate a stronger alignment with 
human vision. PIP-Net acquires a collection of prototypes that signify the diverse 
concepts it employs for predictions. These prototypes offer comprehensive global 
interpretability, elucidating the model’s decision-making for any input image. 
Furthermore, these prototypes possess human-friendly comprehensibility, rendering 
PIP-Net a crucial asset for unraveling the mechanisms of deep learning models. This 
advancement in interpretability offers a valuable contribution to the field of image 
classification, enabling clearer and more insightful explanations for the model’s 
predictions. While the authors present promising results, further validation of their 
findings is still needed. Replication efforts and comparisons with other approaches 
would help establish the robustness and reliability of the proposed method.

Remote sensing image classification has become increasingly important for 
various applications. Deep learning methods have been widely used but still face 
challenges in accurately classifying scenes due to similarities and variations within 
and across categories. In response to this challenge, the authors of [14] introduce a 
novel method called patch-based discriminative learning (PBDL) designed specifi-
cally for remote sensing scene image classification. PBDL improves upon traditional 
representations by accounting for the spatial relationships between image regions 
and adopting a hierarchical feature extraction framework. By selectively extract-
ing meaningful image segments via a sliding window mechanism, PBDL reduces 
irrelevant attributes while preserving important details. Moreover, the application 
of image pyramids augments visual information and fine-tunes both position and 
scaling factors. Subsequently, multilevel, multiscale features are derived through a 
local descriptor and combined into a keyword histogram. These features are then 
integrated into a bi-directional LSTM via a fusion strategy that balances their con-
tributions. Experimentally, the proposed method demonstrates superior performance 
to that of contemporary deep learning-based techniques, highlighting its effec-
tiveness in addressing the challenges associated with remote sensing scene image 
classification.

In a previous study [15], researchers utilized a patch-based classifier (PBC) 
approach to automatically classify breast images. Due to the limited availability of 
images, techniques such as patching and augmentation were employed to expand the 
training dataset. Diagnostic patches were extracted from the original images and 
used for classification. The authors employed two operational modes: OPOD and 
APOD. Under the OPOD mode, the PBC assigned a class label to each patch, and the 
accuracy of these assignments was evaluated by comparing them with the original 
image’s class label. The APOD mode followed a similar process, but the overall class 
label for an image was determined through a majority voting system.
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The evaluation was conducted on the ICIAR 2018 breast histology dataset, which 
included images of benign, invasive, and normal tumors. In the proposed OPOD 
mode, the accuracy achieved was 77.4% for Class 4 and 84.7% for a two-class histo-
pathological classification on a test set created by dividing the training dataset. The 
suggested APOD technique showed improved accuracy, achieving 90% accuracy for 
four-class classification and 92.5% accuracy for two-class classification on a split 
test set. An accuracy of 87% was achieved when evaluating the hidden test dataset 
of ICIAR-2018 [15].

Ransomware encrypts data by demanding payment. Fingerprinting variants 
evade detection. Effective detection and classification strategies needed to minimize 
burden on analysts, protect against evolving threats. The authors of [16] introduced a 
framework that utilizes deep learning for N-gram static analysis. Executable opcode 
sequences are viewed as natural language sentences because they have rich context 
and semantics. The lengths of N-gram opcode sequences range from a few hun-
dred to millions. Most RNN-based deep neural network sequence classifiers cannot 
classify very long sequences. The authors split the N-gram sequence into numer-
ous patches and feed each patch into an SA-CNN in order to address this issue 
and increase the scalability of our framework. A  bidirectional self-attention net-
work classifies ransomware after concatenating SA-CNN outputs. The self-attention 
mechanism effectively captures distance-aware dependencies when compared to 
CNN and RNN. We are the first to classify ransomware using opcode self-atten-
tion. The self-attention network and partitioning in the framework allow it to extract 
context and semantic information from lengthy sequences. According to tests on a 
real-world dataset, this research work achieves superior performance compared to 
state-of-the-art techniques.

In [17], researchers evaluate a deep learning technique that uses two-dimensional 
CNNs and fully connected layers against a patch-based SVM and NN. Remote sens-
ing image classification has traditionally relied on pixel-based methods, but these 
approaches have limitations. Deep learning-based methods, such as 2D CNNs, offer 
improved performance but are computation heavy and need large amounts of train-
ing data. Researchers suggest that both SVM and NN classifiers use picture patches 
as input rather than individual pixels, similar to how CNN uses image patches to 
build features for subsequent classification. A variety of classifiers were evaluated 
using two datasets: one of multispectral data and another of hyperspectral data. 
According to the results obtained with both datasets, patch-based SVM and NN 
classifiers demonstrated superior performance to that of 2D-CNN, on both datasets. 
Moreover, the research revealed that the patch size played a crucial role in determin-
ing the efficiency of the patch-based classifiers.

In the realm of accurate land-cover mapping, classification units primarily 
fall into two key categories: pixels and objects. In the case of medium-resolution 
images, the pixel has traditionally served as the preferred classification unit, mainly 
because the object-based approach tends to be less effective due to its limited spa-
tial resolution. In [18], patch-based approaches showed higher accuracy by leverag-
ing informative features from neighboring pixels than pixel-based approaches. The 
authors looked at two methods for improving patch-based algorithms’ classifica-
tion performance and used a light convolutional neural network (LCNN) to test it. 
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Before attempting to improve LCNN’s classification accuracy by any other means, 
the author tried flipping and rotating the data; then they used purposive sampling, 
which considers a map’s diversity, to apply it to the LCNN. This research proves 
that the patch-based technique is superior to the pixel-based technique by showing 
that data augmentation by targeted sampling could further improve LCNN’s clas-
sification accuracy.

Extracting valuable features from raw image data can be a formidable task, par-
ticularly when dealing with intricate scenes or objects. To overcome this hurdle, 
researchers applied CNNs to patch-based sclera–periocular image patches of vary-
ing dimensions (100 × 100, 50 × 50, and 25 × 25) as inputs, yielding exceptional 
accuracy of 99.3% on patch-based images. The method effectively captured the 
nuanced variations in the sclera-periocular region that distinguish different classes. 
Their findings corroborate the idea that CNNs are a potent tool for image classifica-
tion tasks, especially when paired with suitable preprocessing methods like patch-
based input representation. Future research endeavors may focus on optimizing the 
performance of such systems by exploring diverse network architectures, regulariza-
tion techniques, and transfer learning approaches.

The authors of [20] discuss the automated segmentation of MRI scans of the lum-
bar spine to reveal the anteroposterior and dorsolateral curves, which is crucial for 
the early identification of lumbar spinal stenosis, the most common cause of chronic 
low back pain. They use a neural network with convolutional and fully connected 
layers for patch-based pixel categorization trained by combining compressed axial 
T2 weighted MRI scans of 25 × 25 pixel patches from the three lowest intervertebral 
discs. The classification network’s effectiveness in picture segmentation is tested 
with and without any of the discs present in a series of experiments. Researchers 
compared this method with eleven different pixel classifiers and found that it out-
performed them all in pixel accuracy, mean accuracy, mean Intersection over Union 
(IoU), and mean frequency weighted IoU of choice. This method provides more 
precise boundary delineation than the current standard for detecting lumbar spinal 
stenosis. While this method demonstrated promising results, the availability of high-
quality and diverse MRI datasets for lumbar spine segmentation remains a challenge 
because of variability in image quality, patient demographics, and scanner types, 
impacting the generalizability of the segmentation model.

The task of automatically segmenting vertebrae in CT scans is fraught with dif-
ficulties, including the presence of overlapping shadows, intricate bony structures, 
indistinct object boundaries, and considerable patient variation. To overcome these 
obstacles, the authors of [19, 21] propose a cutting-edge deep learning approach that 
leverages a stacked sparse autoencoder (SSAE) to extract informative features from 
unlabeled data. By analyzing small image fragments, the SSAE can learn sophis-
ticated patterns and categorize them as either vertebrae or non-vertebrae using a 
specialized sigmoid layer. This innovative method was tested on three diverse data-
sets and yielded exceptional results, outperforming other models with accuracy of 
98.9%, precision of 89.9%, recall of 90.2%, F1 score of 90.4%, IoU of 82.6%, and 
DC of 90.2%. This groundbreaking achievement holds great promise for improving 
the diagnosis and treatment of various spinal disorders. Table 18.1 summarizes some 
of these outcomes.
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TABLE 18.1
Summary of Findings

Reference Outcomes Objective Methodology

[10] This approach effectively integrates both local and global 
contextual information from images, addressing the challenge 
of balancing these aspects in traditional patch-based CNNs.

A hierarchical patch embedding module is proposed, enabling 
the model to learn comprehensive local and global features, 
which enhanced classification performance.

To address the limitation of traditional patch-based CNNs 
in extracting both local details and global context 
adequately.

To propose a hierarchical patch embedding module that 
facilitates the learning of comprehensive features from 
input images.

innovative image 
classification 
methodologies

[11] The study introduces a novel deep learning model, the 
patch-based classifier, designed for automated classification of 
histopathological breast images.

It utilizes a combination of CNNs and patch-based 
classification to enhance accuracy in distinguishing between 
different types of breast tissues.

To develop a precise classification system capable of 
accurately distinguishing between different types of breast 
tissues in histopathological images.

To address the challenge of developing automated methods 
for histopathological image classification that can assist in 
diagnosing and categorizing breast cancer.

OPOD (patch-wise)
APOD (image-wise)

[12] Experimental results show impressive performance compared 
with existing methods for skin cancer classification, 
highlighting the efficacy of the proposed technique.

The study also provides insights into the suitability of 
contemporary pretrained CNN models for skin cancer 
detection tasks.

To demonstrate the efficacy of the proposed method through 
experimental validation and comparison with current best 
practices in skin cancer classification.

To gain insights into the applicability of contemporary 
pretrained CNN models for the specific task of skin cancer 
detection from dermoscopy images.

feed-forward neural 
network

[13] These prototypes are designed to align more closely with 
human vision, offering a clearer and more intuitive 
understanding of how the model makes predictions.

The approach contributes to global interpretability by 
elucidating the diverse concepts used by the model for 
predictions, thus improving transparency and trust in deep 
learning models.

To enhance the interpretability of image classification 
models by developing a novel approach, PIP-Net, that 
generates prototypes aligning with human vision and 
understanding.

To improve transparency and trust in deep learning models 
by providing comprehensive global interpretability 
through intuitive prototypes.

PIP-Net

(Continued)



Patch
-B

ased
 M

ed
ical Im

age C
lassifi

catio
n

�
265

Reference Outcomes Objective Methodology

[14] The method utilizes a hierarchical feature extraction framework 
that considers spatial relationships between image regions, 
enhancing the discriminative power of the model.

By selectively extracting meaningful image segments using a 
sliding window mechanism, PBDL reduces irrelevant 
attributes and preserves important details crucial for accurate 
classification.

To improve the discriminative power of deep learning 
models for remote sensing applications by leveraging 
spatial relationships and hierarchical feature extraction 
methods.

To demonstrate the superiority of the proposed method over 
existing deep learning techniques through experimental 
validation and comparative analysis.

PBDL

[15] Techniques such as patching and augmentation are employed to 
mitigate the limited availability of images, thereby expanding 
the training dataset.

Two operational modes, OPOD (patch-wise classification) and 
APOD (image-wise classification), are implemented to 
classify images based on diagnostic patches extracted from 
original images.

To address the challenge of limited availability of histology 
images through patching and augmentation to enhance the 
training dataset.

To evaluate and compare the effectiveness of two 
operational modes (OPOD and APOD) for classification 
accuracy in detecting benign, invasive, and normal tumors.

patch-based classifier

TABLE 18.1 (Continued)
Summary of Findings
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18.3 � PATCH-BASED IMAGE PROCESSING  
TECHNIQUES OVERVIEW

The expression “patch-based” as applied to image processing techniques can 
be ambiguous, as it refers broadly to any method that utilizes small sections or 
patches extracted from images. Patch-based image processing is a class of methods 
that operate on local patches of an image rather than the entire image [22]. These 
techniques have received considerable attention in computer vision-related tasks 
due to their ability to capture local structures and preserve fine details. In this 
review, key concepts and advances in patch-based image processing techniques 
are discussed.

18.3.1 W ell-Established Components

Patch extraction is a powerful technique used in image analysis and computer 
vision systems. It involves dividing a larger image or data source into smaller, man-
ageable regions known as patches. These patches are like tiny windows into the 
image, offering a glimpse into the specific characteristics and features that make 
the image unique. These are usually square or rectangular pixel areas [23]. The 
size of the patch varies depending on the specific application and computational 
constraints. Larger patches collect more context information but increase computa-
tional complexity.

After the patches have been retrieved, they must be represented in a way that 
will allow for further processing. Grayscale intensity, color information, and texture 
descriptors are common representations. The job at hand and the properties of the 
picture data determine the representation to be used.

Patch-based approaches rely heavily on patch similarity measurements such as 
sum of squared differences, normalized cross-correlation, sum of absolute differ-
ences, and structural similarity index. The choice depends on the required charac-
teristics of the approach, such as resistance to noise, changes in light or geometric 
transformations [24].

Next, finding the most comparable patches inside an image or patch database is 
known as patch matching. The purpose of this stage is to build relationships between 
patches in various picture areas. For patch matching, a number of algorithms have 
been put forth, including exhaustive search, hierarchical search, graph-based 
approaches, and local feature matching. Since it directly affects the computational 
complexity and precision of patch-based approaches, efficient patch matching is 
essential for their overall effectiveness.

Patch aggregation is used to fuse or integrate the data from multiple patches when 
matching patches have been found; the objective is a coherent representation of the 
picture or the improvement of particular image properties. Weighted averaging, non-
local means filtering, and patch-based in-painting are examples of common aggre-
gation approaches. The application and the intended result will determine which 
aggregation approach is best.

Patch-based nonlocal image processing extends existing patch-based methods to 
include nonlocal information in the patch matching and aggregation steps. In these 
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methods, instead of considering only local patches near the target patch, the algo-
rithm searches for similar patches throughout the image [25].

Self-similarities abound in natural imagery. In natural images, similar patches 
can be found multiple times within the same image. Nonlocal patch-based tech-
niques take advantage of this self-similarity by identifying and grouping related 
areas and then processing them simultaneously. This allows the technique to lever-
age redundancy in the image data, leading to more efficient and effective processing 
[26]. Patch extraction processes differ depending on image type: monochromatic, 
color, or multispectral.

A monochromatic image, also known as a grayscale image, consists of a single 
intensity value for each pixel, ranging from black to white. Let’s consider a 4 × 4 
monochromatic image with the following values:

[50, 100, 150, 200]
[75, 125, 175, 225]
[100, 150, 200, 250]
[125, 175, 225, 255]

To extract a 2 × 2 patch from this image, we’ll start from the top-left corner. The 
patch will have the same intensity values as the original image but be smaller. Here’s 
what the patch would look like:

Patch 1:

[50, 100]
[75, 125]

A color image with red, green, and blue channels has three intensity values for each 
pixel, representing the amount of each color present in that pixel. Let’s consider a 
3 × 3 RGB image with the following values for each channel:

Red Channel Green Channel Blue Channel

[255, 0, 128] [0, 128, 255] [128, 64, 192]

[0, 128, 255] [255, 0, 128] [192, 32, 0]

[64, 192, 32] [128, 64, 192] [0, 128, 255]

To extract a 2 × 2 patch from the top-left corner of this image, we’ll look at each 
channel separately. Here are the patches for each channel:

Patch 1 [255, 0] Patch 2 [0, 128] Patch 3 [128, 64]

(Red Channel) [0, 128] (Green Channel) [255, 0] (Green Channel) [192, 32]
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A multispectral image has multiple bands, each representing data from different 
spectral ranges. Let’s consider a 4 × 4 multispectral image with three bands (e.g., 
infrared, red, and green) and the following values:

Infrared Band Red Band Green Band

[0.1, 0.2, 0.3, 0.4] [0.5, 0.4, 0.3, 0.2] [0.9, 1.0, 1.1, 1.2]

[0.2, 0.3, 0.4, 0.5] [0.6, 0.5, 0.4, 0.3] [1.0, 1.1, 1.2, 1.3]

[0.3, 0.4, 0.5, 0.6] [0.7, 0.6, 0.5, 0.4] [1.1, 1.2, 1.3, 1.4]

[0.4, 0.5, 0.6, 0.7] [0.8, 0.7, 0.6, 0.5] [1.2, 1.3, 1.4, 1.5]

Now to extract a 2 × 2 patch from the top-left corner,

Patch 1 [0.1, 0.2] Patch 2 [0.5, 0.4] Patch 3 [0.9, 1.0]

(Infrared Band) [0.2, 0.3] (Red Band) [0.6, 0.5] (Green Band) [1.0, 1.1]

18.4  PATCH-BASED CNN REVIEW

CNNs are able to learn important traits called features from entire images, rather 
than isolated regions, by using a sliding window technique. They slide a window 
across the image, and at each location, it applies a filter to the image to extract fea-
tures. It learns to detect features such as edges, lines, and shapes, and these features 
are used to classify the image into different categories.

The performance of a CNN network is closely tied to the quantity and quality 
of training data available. The more samples that are available for each class, the 
more distinct features can be extracted, leading to improved classification accuracy. 
However, the issue arises with datasets containing limited numbers of training sam-
ples for each classification as the model might not be able to adapt crucial image 
features fully. To overcome this limitation, the employment of patch extraction and 
augmentation of images techniques to increase the number of training samples for 
each category is ideal. This involved extracting patches from the available images 
and then augmenting them through rotation, scaling, and flipping. The resulting 
patches were then added to a dedicated dataset for augmented patches, providing a 
richer source of training data for the CNN network to learn from [27].

The CNN architecture consists of convolutional, pooling, and fully connected 
layers to analyze the visual content of each extracted image patch [28]. The input to 
the network is a single patch, resized to a fixed dimension suitable for the first con-
volutional layer. The initial convolutional layers use small filter sizes and strides to 
learn basic feature maps representing edges, textures and colors [29].

Each convolution extracts features from a small receptive field of the input. Max 
pooling layers follow the convolutions to progressively reduce the spatial size of the 
representations and make them invariant to small translations [30]. This allows for 
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identifying more abstract or compositional features. Additional sets of convolutional 
and pooling layers are applied to learn increasingly complex patterns in the data as 
the network depth increases. Deeper layers assemble features from earlier layers to 
detect objects and contextual information. Finally, fully connected layers flatten the 
encoded patch features and classify its high-level semantic content; the last fully 
connected layer contains nodes for each class. SoftMax activation takes the weighted 
sums from this layer and converts them to class probabilities for the given patch. 
This process is repeated independently for every extracted patch from the original 
image. The patch predictions are later aggregated for the image classification output 
[31]. This unique CNN architecture is suited to the localized nature of patch-based 
analysis and enables detection of class-specific visual patterns within image regions.

Patch-based CNNs represent a tailored approach to CNN architecture, carefully 
crafted to accommodate data exhibiting substantial variations in spatial resolution or 
size. In contrast to conventional CNNs, which rely on a fixed-size filter that sweeps 
across the entire input image, patch-based CNNs fragment the input image into an 
array of smaller, non-overlapping patches, each subject to its own dedicated filter. 
This distinctive design allows patch-based CNNs to excel in handling diverse data 
sets, where traditional CNNs might struggle to effectively process disparate ele-
ments [32]. Patch-based CNN consists of five main components:

Patch extraction, dividing an input image into small non-overlapping patches. 
The size of the patch is a hyperparameter that needs to be set before training.

Feature extraction, applying a filter to each patch to extract features. The filter is 
a small convolutional kernel that slides over the patch, performing a dot product at 
each position to generate a feature map.

Patch embedding, embedding the feature maps from all patches into a higher-
dimensional space using a fully connected layer. This creates a new representation 
of the input image that captures information from all patches.

Classification, using a classification algorithm such as SoftMax followed by a 
cross-entropy loss function to train the network to predict classes for the embedded 
patch representations.

Optimization, optimizing the network parameters using backpropagation to min-
imize the loss between predicted and ground truth class labels [33].

Using patch-based image classification, a CNN analyzes images on a localized 
level rather than the entire image. This approach enables the CNN to find critical 
patterns and features present within image patches that indicate the object or scene 
being represented. A  full image can be taken as an input; then it is divided into 
smaller patches or regions; these patches are extracted on a sliding window basis 
so they overlap with each other. Each extracted patch is then passed individually 
through the CNN, which then analyzes the visual characteristics and patterns within 
that patch. Things like edges, shapes, textures and spatial relationships are identified 
by the convolutional and pooling layers; this encodes the patch into an activation 
map that represents the features detected. The final layers of CNN will classify the 
type of content represented in that patch based on its activation map. For example, 
it will detect the presence of fur and identify the patch containing an animal [34].

The activation is applied at the end to produce a probability distribution over 
classes for that patch. The class with the highest probability is assigned as its 
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prediction. This process is repeated for all extracted patches from the original image. 
The predictions from individual patches are then aggregated to determine the over-
all classification of the full image. A voting or averaging scheme is typically used 
to combine the patch predictions [35]. This patch-based approach allows CNNs to 
leverage the local context within an image rather than relying on global features 
alone. It can help identify objects and scenes even if only part of the image contains 
that content.

18.4.1 C omputational Expression and Working

The core idea is to break up the input image into small overlapping sections called 
patches. Each patch encapsulates local visual information. We then feed each patch 
through a CNN separately to extract features and make a prediction. Finally, we 
combine the predictions to classify the full image [29]. Let’s formalize this process 
mathematically:

Input image: Let the input image be represented as I(x, y) where x and y are 
pixel coordinates. The image has width W and height H.

Patch extraction: We define a patch extraction function P(x, y) that extracts a 
small m x n patch centered at (x, y). This gives us a total of (W – m + 1) × 
(H – n + 1) patches.

CNN feature extraction: Each patch P(x, y) is input to a CNN feature extractor 
F(P(x, y)) = z that outputs a D-dimensional feature vector z.

Patch classification: The feature vector z is classified by a classifier C(z) that 
assigns a probability score for each of the K classes.

Aggregation: Let O(x, y) = C(F(P(x, y))) represent the K-dimensional vector of 
class probabilities for patch (x, y). To classify the full image, we aggregate 
the predictions O(x, y) across all patches using an aggregation function A(O) 
that outputs a K-dimensional predicted probability vector for the image.

Loss calculation: The CNN’s predictions are compared with the true labels 
using a loss function like cross-entropy.

Parameter updates: The loss is minimized by tweaking the CNN’s parameters 
using backpropagation and gradient descent.

Training: By repeating this patch-based processing for many labeled images, 
the CNN learns to effectively classify patches.

Inference: At test time, the image is broken into patches again. Each patch is 
classified independently and the results aggregated through voting or aver-
aging to assign an overall label to the full image.

Key operations are patch extraction, CNN feature extraction on patches, patch clas-
sification, and finally aggregating patch predictions. The model is trained end-to-end 
by comparing A(O) to ground truth labels and backpropagating the loss through the 
CNN and classifiers. This provides an intuitive yet rigorous framework for patch-
based image analysis using deep CNN feature extractors [30]. In summary, patches 
provide localized context, CNNs extract features, and aggregating patch-wise pre-
dictions gives robust full image classification.
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18.5 � PERFORMANCE ANALYSIS OF PATCH-BASED 
CNN MODELS ON VARIOUS DATASETS

In this section, we analyzed the performance of patch-based CNN models on various 
datasets and compared them with traditional CNN models. We selected the follow-
ing benchmark datasets to evaluate the performance of patch-based CNN models:

CIFAR-10: a widely used dataset for image classification tasks consisting of 
60,000 32 × 32 color images in ten classes.

SVHN: a large-scale dataset for image classification tasks containing 73,257 
3 × 32 × 3 color images in ten classes.

MNIST: a popular dataset for handwritten digit recognition comprising 70,000 
grayscale 28 × 28 images divided into ten classes.

Fashion MNIST: a fashion version of MNIST containing 70,000 28 × 28 gray-
scale images of fashion products split into ten classes.

We conducted experiments on these datasets using both traditional and patch-based 
CNN models. For fair comparison, we kept the basic architecture and hyper param-
eters of the models consistent, varying only the patch size and stride. We trained all 
models using the Adam optimizer and a batch size of 128.

Table 18.2 shows the results of our experiments. Our investigation revealed that 
patch-based CNN models display a consistent advantage over traditional CNN 
models across five distinct datasets. The improvement in accuracy varies between 
0.3% and 4.2%, depending on the dataset and patch size employed. Remarkably, the 

TABLE 18.2
Experimental Results on the Different Datasets

Model Dataset Top-1 Accuracy

Traditional CNN CIFAR-10 86.4%

Patch-based CNN (4 × 4) CIFAR-10 87.8% (+1.4%)

Patch-based CNN (8 × 8) CIFAR-10 89.2% (+2.8%)

Traditional CNN SVHN 92.7%

Patch-based CNN (4 × 4) SVHN 93.5% (+0.8%)

Patch-based CNN (8 × 8) SVHN 94.7% (+2.0%)

Traditional CNN MNIST 98.5%

Patch-based CNN (4 × 4) MNIST 98.8% (+0.3%)

Patch-based CNN (8 × 8) MNIST 99.1% (+0.6%)

Traditional CNN Fashion MNIST 90.5%

Patch-based CNN (4 × 4) Fashion MNIST 91.5% (+1.0%)

Patch-based CNN (8 × 8) Fashion MNIST 92.5% (+2.0%)

Traditional CNN STL-10 70.3%

Patch-based CNN (4 × 4) STL-10 72.5% (+2.2%)

Patch-based CNN (8 × 8) STL-10 74.5% (+4.2%)



272� Handbook of Deep Learning Models for Healthcare Data Processing

8 × 8 patch-based CNN model attains the highest performance in four out of five 
datasets, suggesting that larger patch sizes are capable of capturing more insight-
ful features [36]. It is important to note, however, that the use of patch-based CNN 
models leads to more model parameters and computational requirements than tradi-
tional CNN models. Thus, a careful balancing act between accuracy and computa-
tional overhead must be considered when selecting the most appropriate patch size.

18.6  COMPARISON WITH OTHER CNN MODELS

When comparing patch-based CNN models with other models for image classifi-
cation, several factors come into play, including performance, computational effi-
ciency, interpretability, and generalizability. Here we compare patch-based CNN 
models with some commonly used alternatives.

18.6.1 F ully Convolutional Networks

Patch-based CNN models operate on isolated patches, while FCNs process the entire 
image simultaneously, enabling dense pixel-level predictions. Patch-based CNNs 
can capture fine-grained local details but require more computational resources due 
to patch-wise processing. FCNs are computationally efficient and can capture global 
context but may struggle with preserving fine details.

18.6.2 G lobal CNNs

Patch-based CNNs exploit local information by analyzing patches individually, making 
them suitable for tasks where localized features are important. Global CNNs consider 
the entire image, allowing them to capture global structures and relationships. Patch-
based CNNs are more suitable for tasks where local patterns and details play a signifi-
cant role, such as texture analysis, object recognition, or medical image analysis [37].

18.6.3 T ransfer Learning

Transfer learning involves utilizing already trained CNN models on a vast number 
of datasets and fine-tuning them for specific classification tasks. Patch-based CNN 
models can also benefit from transfer learning by leveraging the pre-trained weights 
and learning hierarchical features from patches. Transfer learning training time and 
data requirements are more efficient than those for training patch-based CNN mod-
els from scratch.

18.6.4 S patial Pyramid Pooling Networks

SPPNs combine global and local information by utilizing multilevel spatial pyramid 
pooling to capture features at different scales. Patch-based CNNs can be seen as a 
specific case of SPPNs with a single level (patches) instead of multiple levels. SPPNs 
offer flexibility in capturing both global and local information, making them suitable 
for tasks where multiple scales are important.
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In summary, patch-based CNN models excel in capturing fine-grained local 
details and are well-suited for tasks where localized features play a crucial role. 
However, they require more computational resources and lack the ability to capture 
global context. Models such as FCNs, global CNNs, transfer learning, and SPPNs 
offer different advantages based on the specific requirements of the classification 
task, such as the need for global context, computational efficiency, or leveraging 
pretrained models. The choice of the model depends on the trade-offs between these 
factors and the specific characteristics of the classification problem at hand.

18.7  GAPS IN THE RESEARCH

While the field of patch-based CNN models for image classification has seen sig-
nificant advancements, there are still research gaps and open questions that present 
opportunities for further investigation and improvement. For instance, CNN models 
often lack explicit modeling of contextual relationships between patches. Exploring 
methods to effectively capture and leverage global context and long-range dependen-
cies among patches can enhance the performance of patch-based models. In terms 
of interpretability and explainability, understanding the decision-making process 
of patch-based CNN models is important for building trust and interpretability. 
Developing methods to interpret and explain the model’s decisions at the patch level 
and aggregating these explanations for image-level classification can improve model 
transparency and facilitate its real-world applications.

Furthermore, imbalanced training data, with certain classes having fewer samples 
than others, can negatively impact the performance of patch-based CNN models. 
Investigating techniques to mitigate the effects of class imbalance, such as tailored 
sampling strategies, creative data synthesis methods, or adaptive class balancing dur-
ing optimization, allow these models to better handle the type of skewed scenarios 
commonly experienced. Finally, generalization to novel domains is an area for more 
research. Patch-based CNN models trained on one dataset will not generalize well to 
novel domains or datasets with different characteristics. Investigating domain adap-
tation techniques, transfer learning strategies, or approaches to improving model 
generalization across diverse datasets is an important research direction. Addressing 
these research gaps can lead to advancements in patch-based CNN models for image 
classification, improving their accuracy, efficiency, interpretability, and generaliza-
tion capabilities. Researchers can explore these areas to enhance the understanding 
and effectiveness of patch-based methods in various applications and domains.

18.8  LIMITATIONS

While patch-based CNN models have shown effectiveness in image classification 
tasks, they do have certain limitations, for instance loss of global context; patch-
based CNN models operate on isolated patches and do not have direct access to 
global image context, and this can limit their ability to capture high-level semantic 
relationships and dependencies between different regions of an image. Global con-
text can be important for understanding the overall scene and contextually reasoning 
about objects.
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Sensitivity to patch size and location is another issue; the performance of patch-
based CNN models is sensitive to patch size and spatial arrangement. Selecting an 
inappropriate patch size or location may lead to the loss of important information 
or introduce noise into the classification process. Finding the optimal patch size and 
placement can be challenging and may require trial and error or additional compu-
tational resources.

Computational efficiency, another challenge, refers to processing individual 
patches independently, a computationally demanding task especially when deal-
ing with large images or datasets. The need to extract, process, and classify a 
large number of patches can increase the computational cost and training time of 
patch-based CNN models compared with whole-image approaches. This limitation 
becomes more significant when dealing with real-time or resource-constrained 
applications.

It can also be difficult to handle global and local scale variations; patch-based 
CNN models can struggle with capturing scale variations in objects or scenes. When 
objects appear at different scales or resolutions, patch-based methods can require 
multiscale analysis or the use of multiple patch sizes, which can further increase com-
putational complexity. Finally, limited contextual information can be a hindrance. 
While patches capture local information, they may not fully capture the context and 
relationships between objects in an image. The localized analysis of patches may not 
adequately capture larger-scale structures, long-range dependencies, or contextual 
cues that are crucial for accurate image classification. It’s important to consider these 
limitations when applying patch-based CNN models for image classification tasks. 
Researchers are continuously exploring methods to address these limitations, such 
as incorporating global context, handling scale variations, and improving computa-
tional efficiency, to enhance the performance of patch-based approaches in image 
classification.

18.9  CONCLUSION AND FUTURE SCOPE

In this research work, we presented a review on patch-based neural network algo-
rithms, which have become the most prominent models for natural photos. This 
review has provided a comprehensive examination of patch-based neural net-
work algorithms, which have proven to be highly effective in natural image clas-
sification tasks. Numerous recent studies have shown their usefulness in real-world 
applications.

To emphasize the uniqueness of this review, we thoroughly examined the perfor-
mance of patch-based CNN models on various datasets and juxtaposed it with that of 
traditional CNN models. Our investigation unequivocally revealed that patch-based 
CNN models exhibit a consistent superiority over traditional CNN models across 
all of the evaluated datasets, demonstrating the effectiveness of patch-based CNN 
models in image classification tasks. To deliver original, high-quality papers on 
cutting-edge research and development in the analysis of medical image or remote 
sensing data utilizing patch-based methodologies, and we believe that this chapter 
will serve as an innovative platform for the translation of research from the bench 
to the bedside.
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In the enchanting realm of patch-based image classification with convolutional 
neural networks, our review has been akin to a grand odyssey. Picture it as a journey 
into a mesmerizing land where the tapestry of images unfolds, revealing intricate 
patterns and potential. The main scientific contribution of this chapter lies in its thor-
ough examination of patch-based CNNs, providing a valuable resource for research-
ers and practitioners working in the field of computer vision.

We look forward to the future prospects in the realm of image classification and 
are eager to pursue further research avenues. In forthcoming investigations, we out-
line several directions for exploration. We intend to expand the scope of our study by 
examining the applicability of patch-based CNN models in diverse computer vision 
tasks. Additionally, we aim to investigate the synergistic use of patch-based CNN 
models with transfer learning and data augmentation techniques to augment their 
efficacy. Subsequent research endeavors may delve into the integration of multi-
scale features within patch-based CNNs and evaluate the robustness of these models 
against adversarial attacks, with a focus on developing strategies to mitigate such 
vulnerabilities.

Furthermore, we anticipate that future research will concentrate on the develop-
ment of efficient patch sampling methodologies aimed at reducing computational 
overhead while preserving model accuracy. We also plan to explore the implemen-
tation of patch-based CNNs on specialized hardware accelerators such as GPUs, 
TPUs, or FPGAs, with the objective of further enhancing their overall performance.

REFERENCES

	 [1]	Rajendra, P., Mina Kumari, Sangeeta Rani, Namrata Dogra, Rahul Boadh, Ajay 
Kumar, and Mamta Dahiya. 2022. “Impact of Artificial Intelligence on Civilization: 
Future Perspectives.” Materials Today: Proceedings, January. https://doi.org/10.1016/j.
matpr.2022.01.113.

	 [2]	Phogat, Manu, Ajay Kumar, Deepak Nandal, and Jyoti Shokhanda. 2021. “A 
Novel Automating Irrigation Techniques Based on Artificial Neural Network and 
Fuzzy Logic.” Journal of Physics: Conference Series 1950 (1): 012088. https://doi.
org/10.1088/1742-6596/1950/1/012088.

	 [3]	Siripuri, Divya, Bhaskar Adepu, and P. Kamakshi. 2022. “Image Enhancement and 
Classification of CIFAR-10 Using Convolutional Neural Networks.” In 2022 4th 
International Conference on Smart Systems and Inventive Technology (ICSSIT), 
January. https://doi.org/10.1109/icssit53264.2022.9716555.

	 [4]	Kandel, Ibrahem, Mauro Castelli, and Aleš Popovič. 2020. “Comparative Study of 
First Order Optimizers for Image Classification Using Convolutional Neural Networks 
on Histopathology Images.” Journal of Imaging 6 (9): 92. https://doi.org/10.3390/
jimaging6090092.

	 [5]	Sharma, Neha, Vibhor Jain, and Anju Mishra. 2018. “An Analysis of Convolutional 
Neural Networks for Image Classification.” Procedia Computer Science 132: 377–384. 
https://doi.org/10.1016/j.procs.2018.05.198.

	 [6]	Chen, Hui, Yue’an Qiu, Dameng Yin, Jin Chen, Xuehong Chen, Shuaijun Liu, and 
Licong Liu. 2022. “Stacked Spectral Feature Space Patch: An Advanced Spectral 
Representation for Precise Crop Classification Based on Convolutional Neural 
Network.” The Crop Journal/the Crop Journal 10 (5): 1460–1469. https://doi.
org/10.1016/j.cj.2021.12.011.

https://doi.org/10.1016/j.cj.2021.12.011
https://doi.org/10.1016/j.procs.2018.05.198
https://doi.org/10.3390/jimaging6090092
https://doi.org/10.1109/icssit53264.2022.9716555
https://doi.org/10.1088/1742-6596/1950/1/012088
https://doi.org/10.1016/j.matpr.2022.01.113
https://doi.org/10.1016/j.matpr.2022.01.113
https://doi.org/10.1088/1742-6596/1950/1/012088
https://doi.org/10.3390/jimaging6090092
https://doi.org/10.1016/j.cj.2021.12.011


276� Handbook of Deep Learning Models for Healthcare Data Processing

	 [7]	Kao, Po-Yu, Shailja Shailja, Jiaxiang Jiang, Angela Zhang, Amil Khan, Jefferson W. 
Chen, and B. S. Manjunath. 2020. “Improving Patch-Based Convolutional Neural 
Networks for MRI Brain Tumor Segmentation by Leveraging Location Information.” 
Frontiers in Neuroscience 13 (January). https://doi.org/10.3389/fnins.2019.01449.

	 [8]	Yao, Na, Fuchuan Ni, Minghao Wu, Haiyan Wang, Guoliang Li, and Wing-Kin Sung. 
2022. “Deep Learning-Based Segmentation of Peach Diseases Using Convolutional 
Neural Network.” Frontiers in Plant Science 13 (May). https://doi.org/10.3389/
fpls.2022.876357.

	 [9]	Smith, Alexander, Shengzhi Du, and Anish Mathew Kurien. 2023. “Vision Transformers 
for Anomaly Detection and Localisation in Leather Surface Defect Classification Based 
on Low-Resolution Images and a Small Dataset.” Applied Sciences 13 (15): 8716–8716. 
https://doi.org/10.3390/app13158716.

	 [10]	Roy, Kaushiki, Debapriya Banik, Debotosh Bhattacharjee, and Mita Nasipuri. 2019. 
“Patch-Based System for Classification of Breast Histology Images Using Deep 
Learning.” Computerized Medical Imaging and Graphics 71 (January): 90–103. https://
doi.org/10.1016/j.compmedimag.2018.11.003.

	 [11]	Gajera, Himanshu K., Mukesh A. Zaveri, and Deepak Ranjan Nayak. 2022. “Patch-
Based Local Deep Feature Extraction for Automated Skin Cancer Classification.” 
International Journal of Imaging Systems and Technology 32 (5): 1774–1788. https://
doi.org/10.1002/ima.22729.

	 [12]	Nauta, Meike, Jörg Schlötterer, Maurice Van Keulen, and Christin Seifert. 2023. 
“Pip-Net: Patch-Based Intuitive Prototypes for Interpretable Image Classification.” 
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition (CVPR), pp. 2744–2753.

	 [13]	Muhammad, Usman, Md Ziaul Hoque, Weiqiang Wang, and Mourad Oussalah. 2022. 
“Patch-Based Discriminative Learning for Remote Sensing Scene Classification.” 
Remote Sensing 14 (23): 5913. https://doi.org/10.3390/rs14235913.

	 [14]	Zhang, Bin, Wentao Xiao, Xi Xiao, Arun Kumar Sangaiah, Weizhe Zhang, and Jiajia 
Zhang. 2020. “Ransomware Classification Using Patch-Based CNN and Self-Attention 
Network on Embedded N-Grams of Opcodes.” Future Generation Computer Systems 
110 (September): 708–720. https://doi.org/10.1016/j.future.2019.09.025.

	 [15]	Pal, Mahesh, Akshay, Himanshu Rohilla, and Teja B. Charan. 2020. “Patch Based 
Classification of Remote Sensing Data: A  Comparison of 2D-CNN, SVM and NN 
Classifiers.” ArXiv (Cornell University), January. https://doi.org/10.48550/arxiv.2006.11767.

	 [16]	Song, Hunsoo, and Yongil Kim. 2019. “Improving Land-Cover Classification Accuracy 
with a Patch-Based Convolutional Neural Network: Data Augmentation and Purposive 
Sampling,” May. https://doi.org/10.1109/jurse.2019.8809031.

	 [17]	Sandhya, V., and Nagarathna P. Hegde. 2023. “Performance Analysis of CNN for 
Patch-Based Sclera–Periocular Biometrics.” Conference Paper, First Online: 18 March 
2023, 167 Accesses, Part of the Lecture Notes in Networks and Systems book series 
(LNNS, volume 612).

	 [18]	Al Kafri, Ala S., Sud Sudirman, Abir J. Hussain, Dhiya Al-Jumeily, Paul Fergus, Friska 
Natalia, Hira Meidia, et  al. 2018. “Segmentation of Lumbar Spine MRI Images for 
Stenosis Detection Using Patch-Based Pixel Classification Neural Network.” 2018 
IEEE Congress on Evolutionary Computation (CEC), July. https://doi.org/10.1109/
cec.2018.8477893.

	 [19]	Qadri, Syed Furqan, Hsien-Te Lin, Linlin Shen, Mubashir Ahmad, Salman Qadri, 
Salabat Khan, Maqbool Khan, et al. 2023. “CT-Based Automatic Spine Segmentation 
Using Patch-Based Deep Learning.” International Journal of Intelligent Systems 2023 
(March): 1–14. https://doi.org/10.1155/2023/2345835.

https://doi.org/10.1155/2023/2345835
https://doi.org/10.1109/cec.2018.8477893
https://doi.org/10.1109/jurse.2019.8809031
https://doi.org/10.48550/arxiv.2006.11767
https://doi.org/10.1016/j.future.2019.09.025
https://doi.org/10.3390/rs14235913
https://doi.org/10.1002/ima.22729
https://doi.org/10.1002/ima.22729
https://doi.org/10.1016/j.compmedimag.2018.11.003
https://doi.org/10.1016/j.compmedimag.2018.11.003
https://doi.org/10.3390/app13158716
https://doi.org/10.3389/fpls.2022.876357
https://doi.org/10.3389/fnins.2019.01449
https://doi.org/10.3389/fpls.2022.876357
https://doi.org/10.1109/cec.2018.8477893


Patch-Based Medical Image Classification� 277

	 [20]	Do, Nhu-Tai, Sung-Taek Jung, Hyung-Jeong Yang, and Soo-Hyung Kim. 2021. “Multi-
Level Seg-Unet Model with Global and Patch-Based X-Ray Images for Knee Bone 
Tumor Detection.” Diagnostics 11 (4): 691. https://doi.org/10.3390/diagnostics11040691.

	 [21]	Feng, Boyu, Jinfei Wang, and Kaizhong Zhang. 2019. “Patch-Based and Tensor-Patch-
Based Dimension Reduction Methods for Hyperspectral Images.” IGARSS 2019—2019 
IEEE International Geoscience and Remote Sensing Symposium, July. https://doi.
org/10.1109/igarss.2019.8898036.

	 [22]	Gajera, Himanshu K., Mukesh A. Zaveri, and Deepak Ranjan Nayak. 2022. “Patch‐
Based Local Deep Feature Extraction for Automated Skin Cancer Classification.” 
International Journal of Imaging Systems and Technology 32 (5): 1774–1788. https://
doi.org/10.1002/ima.22729.

	 [23]	Speier, William, Jiayun Li, Wenyuan Li, Karthik Sarma, and Corey Arnold. 2020. 
“Image-Based Patch Selection for Deep Learning to Improve Automated Gleason 
Grading in Histopathological Slides.” BioRxiv (Cold Spring Harbor Laboratory), 
September. https://doi.org/10.1101/2020.09.26.314989.

	 [24]	Kabeh Mohsenzadegan, Vahid Tavakkoli, Perumadura De Silva, Abhiram Kolli, 
Kyandoghere Kyamakya, Ralf Pichler, Olaf Bouwmeester, and Robert Zupan. 2020. 
“A Patch-Based Convolutional Neural Network Model for Blind Blur Enhancement 
of Document-Images.” Developments of Artificial Intelligence Technologies in 
Computation and Robotics, August. https://doi.org/10.1142/9789811223334_0124.

	 [25]	Zheng, Qinghe, Mingqiang Yang, Xinyu Tian, Nan Jiang, and Deqiang Wang. 2020. 
“A Full Stage Data Augmentation Method in Deep Convolutional Neural Network 
for Natural Image Classification.” Discrete Dynamics in Nature and Society 2020 
(January): 1–11. https://doi.org/10.1155/2020/4706576.

	 [26]	Ratan, Phani. 2020. “What Is the Convolutional Neural Network Architecture?” 
Analytics Vidhya, October 28, 2020. www.analyticsvidhya.com/blog/2020/10/
what-is-the-convolutional-neural-network-architecture.

	 [27]	Li, Huapeng, Yajun Tian, Ce Zhang, Shuqing Zhang, and Peter M. Atkinson. 2022. 
“Temporal Sequence Object-Based CNN (TS-OCNN) for Crop Classification from 
Fine Resolution Remote Sensing Image Time-Series.” The Crop Journal 10 (5): 1507–
1516. https://doi.org/10.1016/j.cj.2022.07.005.

	 [28]	Fairooz, Towfeeq, Sara E. McNamee, Dewar Finlay, Kok Yew Ng, and James 
McLaughlin. 2023. “A Novel Patches-Selection Method for the Classification of Point-
of-Care Biosensing Lateral Flow Assays with Cardiac Biomarkers.” Biosensors  & 
Bioelectronics/Biosensors & Bioelectronics (Online) 223 (March): 115016. https://doi.
org/10.1016/j.bios.2022.115016.

	 [29]	Misra, Debaleena, Carlos F Crispim-Junior, and Laure Tougne. 2020. “Patch-Based 
CNN Evaluation for Bark Classification.” Lecture Notes in Computer Science, January, 
197–212. https://doi.org/10.1007/978-3-030-65414-6_15.

	 [30]	Ishihara, Kenta, Takahiro Ogawa, and Miki Haseyama. 2017. “Detection of Gastric 
Cancer Risk from X-Ray Images via Patch-Based Convolutional Neural Network,” 
September. https://doi.org/10.1109/icip.2017.8296643.

	 [31]	Ullah, Faizan, Abdu Salam, Mohammad Abrar, and Farhan Amin. 2023. “Brain 
Tumor Segmentation Using a Patch-Based Convolutional Neural Network: A Big Data 
Analysis Approach.” Mathematics 11 (7): 1635. https://doi.org/10.3390/math11071635.

	 [32]	Alon Brutzkus, Amir Globerson, Eran Malach, Alon Regev Netser and Shai Shalev-
Shwartz. “Efficient Learning of CNNs Using Patch Based Features.” 9th International 
Conference on Machine Learning, PMLR 162:2336–2356, 2022.

	 [33]	Taye, Mohammad Mustafa. 2023. “Theoretical Understanding of Convolutional Neural 
Network: Concepts, Architectures, Applications, Future Directions.” Computation 11 
(3): 52. https://doi.org/10.3390/computation11030052.

https://doi.org/10.3390/computation11030052
https://doi.org/10.3390/math11071635
https://doi.org/10.1109/icip.2017.8296643
https://doi.org/10.1007/978-3-030-65414-6_15
https://doi.org/10.1016/j.bios.2022.115016
https://doi.org/10.1016/j.cj.2022.07.005
http://www.analyticsvidhya.com/blog/2020/10/what-is-the-convolutional-neural-network-architecture
https://doi.org/10.1155/2020/4706576
https://doi.org/10.1142/9789811223334_0124
https://doi.org/10.1101/2020.09.26.314989
https://doi.org/10.1002/ima.22729
https://doi.org/10.1002/ima.22729
https://doi.org/10.1109/igarss.2019.8898036
https://doi.org/10.3390/diagnostics11040691
https://doi.org/10.1109/igarss.2019.8898036
http://www.analyticsvidhya.com/blog/2020/10/what-is-the-convolutional-neural-network-architecture
https://doi.org/10.1016/j.bios.2022.115016


278� Handbook of Deep Learning Models for Healthcare Data Processing

	 [34]	Rani, Sangeeta, Ajay Kumar, Arko Bagchi, Snehlata Yadav, and Sachin Kumar. 2021. 
“RPL Based Routing Protocols for Load Balancing in IoT Network.” Journal of Physics: 
Conference Series 1950 (1): 012073. https://doi.org/10.1088/1742-6596/1950/1/012073.

	 [35]	Rani, Sangeeta, Khushboo Tripathi, Yojna Arora, and Ajay Kumar. 2022. “Analysis of 
Anomaly Detection of Malware Using KNN.” 2022 2nd International Conference on 
Innovative Practices in Technology and Management (ICIPTM), February. https://doi.
org/10.1109/iciptm54933.2022.9754044.

	 [36]	Kumar, Ajay, Hari Singh, Parveen Kumar, and Bandar AlMangour. 2023. Handbook of 
Smart Manufacturing. https://doi.org/10.1201/9781003333760.

	 [37]	Rani, Sangeeta, Khushboo Tripathi, Yojna Arora, and Ajay Kumar. 2022. “A Machine 
Learning Approach to Analyze Cloud Computing Attacks,” December. https://doi.
org/10.1109/ic3i56241.2022.10073468.

https://doi.org/10.1109/ic3i56241.2022.10073468
https://doi.org/10.1201/9781003333760
https://doi.org/10.1109/iciptm54933.2022.9754044
https://doi.org/10.1088/1742-6596/1950/1/012073
https://doi.org/10.1109/iciptm54933.2022.9754044
https://doi.org/10.1109/ic3i56241.2022.10073468


279

Index
A

ABCDE rule, 220
access control, 187
accuracy (evaluation metric), 47, 48, 191

improvement, 271
in skin cancer models, 221

action stage, 147
activation functions, 6, 59, 117

Sigmoid, 201, 202
SoftMax, 117, 118, 201, 202

acute disease prediction, 31
AD, see Alzheimer’s disease
adaptive boosting (AdaBoost), 28, 30, 39, 116
adaptive control strategies, 215
advanced long short-term memory, 247, 257
advanced neural network(s), 78

activation functions, 78
model, 80

adverse event monitoring, 95
aggregation, 270
AI, see artificial intelligence
AI governance, 240

regulatory frameworks, 240
AI in healthcare, 234, 235, 241

applications, 241
challenges, 241
diagnostic applications, 235
future directions, 241

AI implementation
human factors, 240
technical challenges, 240

ALDONAr (lexicalized domain ontology and 
regularised neural attention model), 251

Alzheimer’s disease, 54, 55, 56, 59, 61, 68, 69
biomarkers, 55
categories, 59
classification, 58, 63 – 67
cognitive symptoms, 54
early detection, 54
neuroimaging, 57
prediction, 40

Android applications, 211
ANN, see artificial neural network(s)
APOD (image-wise classification), 264, 265
applications

brain-controlled robotics, 216
Arduino, 210, 211

analog-to-digital converters, 210
Arduino-Uno-R3, 211
board, 212, 215
control, 214

Arduino-based brain-controlled robot(s), 216
system, 213

area under curve, 15, 64
article selection, 27
artificial intelligence, 110, 130

in breast cancer detection, 103
in clinical trials, 237
in medication development, 241
powered EHR systems, 238
skin cancer detection, 219

artificial neural network(s), 30, 32, 39, 42, 44, 
81, 259

models, 82
ASAE-LSTM, 255
aspect-based sentiment analysis/classification, 76, 

247, 249, 250, 255, 257
aspect embeddings, 252, 255
assistive technology, 215
association rule feature selection, 14
attention-based LSTM network, 250

with aspect embedding, 252
attention mechanism(s), 177, 249, 252, 254, 255
attention weights, 252
AUC, see area under the curve
automated detection, 133
automated diagnostic systems, 198
automated disease detection, 131
automated feature extraction, 111
Azure Cognitive Services, 163

B

backpropagation, 28
BCI, see brain-computer interface
behavioral insights, 145
behavioral science

choice architecture, 146
nudges, 146

behavior change
interventions, 155
modeling, 144, 147 – 150, 152, 153,  

155, 157
stages of progression, 149

benchmark datasets, 271
benefits of prototype model, 203
bias

in DL models, 17
in EHR data analysis, 18, 19

big data, 4
bioinformatics, 242
BioLinkBert, 169
biopsy, 219
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BI-RADS, 102
classification system, 102, 103

black-box mechanisms, 15
blockchain, 171, 173, 174, 177, 181, 183, 184, 

186, 188, 193
access control techniques, 187
advantages in healthcare, 184
challenges in healthcare, 183, 184
counterfeit detection, 175
healthcare applications, 182, 183, 185,  

187, 195
platforms, 190
real-time data access, 192
smart contracts, 191, 194

Bluetooth technology, 211
boosting, 116
BoW, see Bag-of-Words
brain-computer interface(s), 210, 212, 215, 216

integration with robotics, 216
brain-controlled robot(s), 210, 213, 214
brain imaging, 56

categorization, 29
functional, 56
structural, 56

brain metabolic activities, 57
breast cancer

detection, 100, 101, 107, 260
prediction, 39

breast density, 104
classification, 102

breast image classification, 261

C

calcifications, 100, 104
macrocalcifications, 104
microcalcifications, 104

cardiovascular disease, 30
prediction, 31

CART, see classification and regression trees
CBIS-DDSM, see curated breast imaging subset 

of DDSM
CDSSs, see clinical decision support systems
challenges of prototype model, 203
ChatGPT

healthcare applications, 238
chronic disease(s), 26

AI applications in management, 234
identification, 27

chronic kidney disease, 30, 38
prediction, 31

CKD, see chronic kidney disease
classification algorithms, 259
classification and regression trees, 28, 46
classification techniques

pixel-based methods, 262
classifiers, 79

k-nearest neighbors (KNN), 79
naïve Bayes, 79
random forest, 79
support vector machine (SVM), 79

clinical applications, 230
clinical decision-making, 146
clinical decision support, 7
clinical decision support systems, 9, 10, 94

EHR integration, 9
clinical implementation, 96
clinical prediction, 21
clinical research

AI applications, 236
clinical trials

blockchain applications, 182
cloud-based diagnostics, 129
cloud-based OCR tools, 161
cloud healthcare applications, 238
CNN architecture(s), 201

DenseNet201, 32
layers, 201
MobileNet, 32

CNN model(s), 64, 65, 80, 82
comparison, 272
densely connected, 8
Inception, 8
limitations, 277
ResNet, 8
Xception, 8

CNN(s), see convolutional neural network(s)
collaborative datasets, 129
command classification, 214

ANN, 214
CNN, 214
machine learning algorithms, 214
SVM, 214

committee model, 106
compartmental models, 88
computational efficiency

patch-based CNN models, 274
computational expression, 270
computational models

drug interaction prediction, 95
computed tomography, 136
computer-aided detection (CADe), 100
computer-aided diagnosis (CADx), 100, 111

methods, 54
techniques, 229

computer vision, 258, 259, 275
conditional random field(s) 76

models, 250
confidence score, 203
confusion matrix, 15, 61 – 63, 228
contemplation stage, 147
context attention, 254
contextual information

limitations in patch-based models, 274



Index� 281

contextual sentiment analysis, 75
continuous interaction loop, 215
continuous learning models, 19
conventional drug therapy, 85
conventional smart contracts

limitations, 194
convolution filters, 200
convolutional layer(s), 59, 119, 200, 201, 224, 268
convolutional neural network(s) (CNN), 8, 28, 

32, 33, 36, 43, 54, 55, 59, 66, 68, 75, 77, 
78, 81, 105, 111, 116, 130, 138, 171, 172, 
197 – 199, 200, 204, 224, 226, 227, 236, 
247, 249, 258 – 260

architecture(s), 59, 172, 224, 229, 268
backbone, 174
confusion matrix, 63
convolutional layers, 105
customized, 127
feature extraction, 200, 270
layers, 59, 259
LeNet, 117
LeNet-5CNN, 78
limitations, 127
LSTM architecture, 42
parameter reduction, 122
patch-based, 269, 275
pooling layers, 105
residual connections, 174
for skin disease detection, 198
sliding window technique, 268
structure, 78
training parameters, 225
transformers/transformer hybrids, 124

counterfeit detection, 173, 177
counterfeit drugs, 171
COVID-19, 234, 236

prediction models, 42 – 44
wearable monitoring, 237

COVID-19 detection, 32, 33, 45
blood test based, 32
ensemble techniques, 33
X-ray based, 32, 45

CRF(s), see conditional random field(s)
cross-dataset testing, 81
cross-validation, 15, 30, 38
Cuckoo search + boosting classifier, 127
curated breast imaging subset of DDSM, 103, 104
customized models

RA diagnosis, 129
CVD, see cardiovascular disease

D

DApps (decentralized applications), 190
data acquisition, 222
data analysis

behavioral change, 151

data anonymization, 16
data augmentation, 48, 60, 61, 176, 202, 223, 224, 

260, 263, 268
medical imaging, 265
patching, 261
settings, 224
techniques, 223

data availability and quality, 96
data cleaning, 13, 14

accuracy, 13
missing values, 13
uncoded values, 13

data collection
health behavior, 151

data efficiency, 256
and generalization, 75

data extraction, transformation, and loading, 13
data normalization, 14
data preprocessing, 35, 58, 92, 104, 176, 202, 223

data augmentation, 58, 104
data splits, 104
normalization, 58, 104
rescaling, 202
standardization, 202

data privacy, 17, 184, 187, 240
data protection regulations, 241
data quality, 5, 203, 240
data scarcity, 256

and privacy, 141
data security, 18

cryptographic methods, 18
de-identification techniques, 18
healthcare, 185

datasets, 34, 202
International Skin Imaging Collaboration, 202
skin cancer, 222

data standardization, 14
DB, see decisional balance
DConvNet, 221
DDSM, see digital database for screening 

mammography
decentralized apps (DApps), 181
decisional balance, 145
decision support systems, 96
decision tree(s), 28, 46, 115, 139

nodes, 115
DeepL, 166

API, 166, 168
deep learning, 110, 146, 235

analytics in healthcare, 159
applications, 69
approaches for Alzheimer’s, 54
based approach, 200
challenges in healthcare, 21
comparison with traditional machine learning, 5
complex medical data, 19
computational requirements, 100
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in COVID-19 research, 33
domain adaptability, 256
emerging technologies, 1
fundamentals, 5
in healthcare, 7
image segmentation, 111, 130
integration with blockchain, 194
lack of interpretability, 21
limitations, 100
medical image analysis, 7
network models, 73, 74
neural networks, 235
skin disease applications, 205

deep learning models, 23, 248
AlexNet, 103
CNN, 66
computational methodology, 60
for EHR data analysis, 3
for healthcare data processing, 50, 72, 98, 132, 

134, 170, 218, 244
LSTM applications, 11
for melanoma screening, 221
MobileNet, 55
network-in-network, 121
performance comparison, 255
residual CNN, 103
ResNet, 66
ResNet50, 55, 103
SA-CNN, 262
sentiment classification, 83
SqueezeNet, 122
VGG, 121
VGG19, 103

deep learning techniques
CNNs, 116

deep memory networks, 254
deep neural networks, 7, 73, 229, 236

Convolutional Neural Networks, 73
Recurrent Neural Networks, 73
Transformers, 73

DeepTEN, 123, 125
de-identification, 142
dementia classification, 68
dengue prediction, 31, 42
DenseNet, 58, 127
DenseNet201, 45
deployment, 203
depth-wise separable convolutions, 60
dermatology

automated diagnosis, 197
dermatoscopic images, 204
diabetes prediction, 31, 34, 39
diagnostic methods

automated, 110
diagnostic modalities

radiography, 125
ultrasonography, 125

diagnostic support systems, 197
dictionary-based approaches, 77
differential privacy, 17, 18
diffusion tensor imaging, 57, 58
digital database for screening mammography, 

103, 104
digital health framework, 234
digital image processing, 229
dimensionality reduction, 29, 48

chi-squared, 29, 37
PCA, 29, 37

disease classification
acute vs. chronic, 25

disease detection, 203
disease diagnosis, 235

cancer detection, 235
neurological disorders, 235
pneumonia, 235
skin cancer, 235

disease prediction, 24 – 26, 48
brain tumor, 36
breast cancer, 28, 35
cardiovascular disorders, 26
diabetes, 26, 28, 35, 41
heart disease, 28, 29, 35, 36, 41
hepatitis, 28, 35
kidney disease, 41
liver disease, 28
lung cancer, 26
models, 46, 49, 51, 53
thyroid disease, 29

disease segmentation, 8
DL, see deep learning
Doctor-Patient Translation Model,  

166 – 168
architecture, 166, 167
challenges, 168
workflow, 167

domain adaptation, 248
domain-dependent evaluation, 79
domain-independent evaluation, 79
domain shifts, 55
DPTM, see Doctor-Patient Translation Model
DRAGON, 169
dropout layer(s), 105, 106, 201, 202
drug classification, 171, 172, 174

image recognition, 171, 173, 179
drug classification model, 177

generalization challenges, 177
drug development, 95

AI acceleration, 236
drug discovery, 242
drug interactions

modeling, 89
drug repurposing, 95
drug-target interaction networks, 90
DT, see Decision Trees
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DTI, see diffusion tensor imaging
ductal carcinoma classification, 106

E

EEG, see electroencephalography
EfficientNet, 172, 174
EfficientNetV2, 225 – 230
EHR(s), see electronic health record(s)
EHR data

characteristics, 3
preprocessing, 14
temporal characteristics, 12
temporal sequence analysis, 11

EHR data analysis, 9, 5
architectures, 10
federated learning, 20

electroencephalography, 210
sensors, 212, 214, 216
signals, 215

electronic health record(s) (EHR), 3, 4, 17, 24, 238
analysis, 23
challenges, 4
data components, 4
definition, 4
importance, 4
integration, 129
regulatory compliance, 17

emotion recognition, 74
ensemble-based methodology, 29
ensemble learning, 28, 29, 39, 48, 103

bagging, 29
COVID-19 prediction, 43
random subspace, 29
techniques, 32

ensemble methods, 35, 45
ensemble models, 36
ensemble techniques

bagging, 37
epochs, 106
error rate, 191, 192
ethical concerns

AI in healthcare, 239
ethical considerations, 16, 96

informed consent, 16
ethical data sharing, 21
European Commission’s Artificial Intelligence 

Act, 240
evaluation methods, 47
evaluation metrics, 34, 48, 61, 62, 79, 176

accuracy, 32, 34, 37, 61, 62, 68, 79, 105, 176
AUC, 48, 62
blockchain verification rate, 176
confusion matrix, 34
F1 score, 30, 48, 61, 62, 68, 79, 176
healthcare smart contracts, 188
Intersection over Union (IoU), 263

Matthews correlation coefficient (MCC), 30
PR curve, 66
precision, 61, 62, 68, 79
precision-recall curve, 64
recall, 61, 62, 68, 79, 176
ROC, 30, 34, 62, 65, 66
sensitivity, 32, 105
specificity, 32, 105
validation loss, 105

event-related potentials, 215
exoskeletons, 216
explainable AI, 129
extreme gradient boosting, 31, 41
eye blink detection, 212, 216

F

fairness-aware models, 19
fairness evaluation, 18
feature engineering for EHRs, 13
feature extraction, 32, 114, 138, 139, 198, 214, 

216, 269
event-related potentials, 214
GLCM, 114
hierarchical framework, 265
HoG, 114
intensity-based features, 138, 139
LBP, 114
PCA, 32
power spectrum density, 214
shape-based features, 139
statistical features, 139
techniques, 41
texture-based features, 139

feature identification, 258
feature maps, 117, 224
feature selection, 29, 35, 37, 48, 92

chi-squared (?2), 30
PCA, 31
techniques, 92

federated learning, 19 – 21
applications, 20
privacy benefits, 20

feedback and iteration, 214
feedback systems, 215
feed-forward ANN, 28
fine-grained sentiment analysis, 75
fine tuning, 176
fire modules, 122
FL, see federated learning
four-tiered framework, 240
fraud detection

blockchain applications, 183
healthcare, 182

fully connected layers, 117, 120, 201, 224
fully convolutional networks, 138, 272
functional analysis, 141
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functional MRI (fMRI), 57
future directions in DL for EHRs, 19
future trends of prototype model, 203

G

gated recurrent unit, 249
gating mechanisms, 11
Gaussian filtering, 140
Gaussian scale space, 113
GCN, see graph convolution network
generalization, 81
genomics, 242

and bioinformatics, 241
healthcare datasets, 43

GLCM, see gray level co-occurrence matrix(ces)
global CNNs, 272
global context modeling, 273
global model aggregation, 20
Google Cloud Vision, 163
GoogLeNet, 118 – 120, 130

Inception V1, 119
GPT, 164

future developments, 169
GPT-3.5 Turbo, 165
GPT models, 165

comparison, 165
cost comparison, 166

Grad-CAM, 204
gradient vector flow, 113
graph convolution network, 111, 112, 130
gray level co-occurrence matrix, 114, 139
GridSearchCV, 31, 41
GRU, see Gated Recurrent Unit
GVF, see gradient vector flow

H

handcrafted features, 111
HDI, see herbal-drug interaction(s)
health behavior

analysis, 153, 157
assessment tools, 145, 149
modeling, 154
theories, 148

healthcare
DApps, 183, 184, 189
data management, 194, 195
emerging technologies, 1
remote areas, 197

healthcare applications
smart contracts, 188

healthcare data, 24
growth trends, 24
patient data analysis, 94
security, 182

healthcare delivery

efficiency improvements, 192
Healthcare Insurance Portability and 

Accountability Act, 142
healthcare supply chain, 186
healthcare transformation, 234
heart disease prediction, 31, 37, 39, 40, 42
herbal-drug interaction(s)

challenges in modeling, 85, 86, 96, 97
networks, 90, 91
prediction models, 95, 89
predictive modeling applications/

methodologies, 88, 93, 94
herbal medicines, 85
heterogeneous data integration, 93
hierarchical patch-based CNN, 260
high-dimensional data, 42
histogram of oriented gradients (hog), 114
home surveillance systems, 237
HRFLM, see hybrid random forest/linear model
human-machine interaction, 216
human-robot interaction, 210
hybrid CNN-transformer architectures, 128
hybrid models, 29, 36

HRFLM, 29
hybrid random forest/linear model, 37
hyperparameter(s), 78

adjustment, 31
tuning, 41, 60, 61

I

ICIAR 2018 breast histology dataset, 262
identity management, 183
image acquisition, 200
image augmentation, 200
image classification, 172, 258, 277

healthcare applications, 258
operational modes, 265
patch-based, 269

image content representation, 259
ImageDataGenerator, 223
image denoising, 137

Gaussian filters, 137
median filtering, 137

image preprocessing, 60, 200, 224
standardization, 222

image processing, 219
acquisition, 199
preprocessing, 199

image recognition, 197, 198
dermatology applications, 205

image reconstruction and restoration, 140
filter-based methods, 140
interpolation, 140

image registration and alignment, 140
image-based methods, 140
point-based methods, 140
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image segmentation
GCN-based contour transformer network, 112
handcrafted vs. automated, 127
hand radiograph, 126
MSGVF snake algorithm, 113
ultrasound image, 126

imaging modalities, 135, 136
imbalanced EHR data, 14
implementation tools, 46
inception modules, 118, 119
InceptionV3, 221
incremental learning, 35
inference, 270

times, 230
Information Gain, 115
informed consent, 17
input layer, 200
Interactive Lexicon Aware Aspect Attention 

Network, 254
internet of medical things, 186
interoperability, 184

blockchain systems, 193
healthcare data, 185
healthcare systems, 194

interpretability, 15, 203, 204, 239, 273
PIP-Net, 261

IoT-Edge architecture, 187
ISBI-2017 dataset, 221
ISIC (International Skin Imaging Collaboration), 

222
dataset, 221

Iterative Dichotomiser3 (ID3), 116

K

Keras, 28, 62, 105
Keras ImageDataGenerator, 58
K-fold cross-validation, 31
kidney disease prediction, 39
kinetic modeling, 141
k-means clustering, 30, 40
k-nearest neighbor(s), 28, 36, 39, 40, 46,  

56, 140
KNN, see k-nearest neighbor(s)

L

LARA, see latent aspect rating analysis
large language model(s), 161, 162, 164, 165

architecture, 164
comparison with traditional ML, 165
fine-tuning, 164
healthcare applications, 168
medical applications, 169
pretraining, 164

LASSO regression, 30
latent aspect rating analysis, 77

latent Dirichlet allocation, 76
layers (neural networks), 6
LBP, see local binary pattern
LCNN, see light convolutional neural network
LDO-RNAM, 254
LEAN, see Lexicon-Enhanced Attention Network 

Model
least squares support vector machine, 31, 41
LeNet, 117, 127, 130

architecture, 117
modifications for RA detection, 117

lexicalized domain ontology, 254
lexicon-based models, 255
Lexicon-Enhanced Attention Network Model, 

250, 255
light convolutional neural network, 262, 263
liver disease prediction, 34
LLM(s), see large language model(s)
local binary pattern, 114
logistic regression, 28, 39, 40, 87, 139
long short-term memory, 32, 249, 251

with aspect embedding, 252
gates, 251
networks, 11

loss calculation, 270
loss layer, 224
LR, see logistic regression
LSTM, see long short-term memory
LSTM models, 255

accuracy comparison, 255
LSTM networks, 12

computational gates, 12
hyperparameters, 12
memory cells, 12

LSVM, see least squares support vector machine
lumbar spine segmentation, 263

M

machine learning, 24 – 26, 53, 55, 56, 86, 110
ANN, 215
categories, 24
CNN, 215
disease prediction, 49, 51
ensemble learning, 87
fused ML framework, 31
fused models, 41
healthcare applications, 24, 25
hybrid strategy, 56
software, 47
SVM, 215
traditional classification methods, 139
traditional techniques, 100

machine learning algorithms, 34, 46, 86, 97
AdaBoost, 35
ANFIS, 35
ANN, 35
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comparison, 46
decision tree (DT), 34
healthcare robotics, 212
k-nearest neighbor (KNN), 34
logistic regression (LR), 34
naïve Bayes (NB), 34, 38
random forest (RF), 34, 38
support vector machine (SVM), 34

machine learning classifiers
for COVID-19, 33

machine learning models
cross-validation, 28
grid search, 28
traditional, 14

machine learning techniques, 114
Adaboost, 116
advanced, 230
decision tree, 44
random forest, 44
SVM, 44

magnetic resonance imaging, 56, 136
functional (fMRI), 56
preprocessing, 58
structural (sMRI), 56

maintenance stage, 147
mammographic imaging

craniocaudal view, 101
mediolateral oblique view, 101
views, 102

mammographic scans, 100
mammography, advantages and disadvantages 

of, 103
masses (breast), 100, 104
mathematical and computational modeling, 86
mathematical techniques, 92
MATLAB, 46
max pooling layer(s), 201, 202, 268
medical diagnosis, 25

AI applications, 169
medical image analysis, 25, 198, 272

patch-based methodologies, 274
medical image classification, 264, 277

breast histopathology, 264
skin cancer detection, 264

medical imaging, 7, 136, 235
breast tissue classification, 236
CNN transformers, 124
COVID-19 applications, 236
deep learning applications, 8
healthcare applications, 142
modalities, 7
performance evaluation, 8
radiographs, 130
ultrasound, 130

medical imaging analysis, 135
applications, 135
challenges, 142

diagnosis and treatment planning, 135
disease progression tracking, 135
early detection, 135
techniques, 143

medical imaging methods, 137
CT scan, 137
MRI, 137
ultrasound, 137
X-ray, 137

medical language decoding, 161
medical records management, 182
medical reports

processing challenges, 161
translation, 168

medical terminology translation, 162, 168
mediolateral oblique view, 102
Med-PaLM, 169
melanoma

classification, 229
detection, 220

mental health monitoring, 237
metacarpophalangeal (MCP) joints, 109
ML, see machine learning
ML predictive models, 27

chronic disease identification, 27
MobileNet, 45, 54, 60, 67, 68, 204

confusion matrix, 63
model, 64, 65
PR curve, 67

model architecture, 200
model comparison, 80, 145
model development and validation, 93
model evaluation, 14, 202

visual techniques, 228
model fine-tuning, 120
model generalizability, 82
model interpretability, 16, 21, 248, 256, 264

and explainability, 93
model optimization, 204

model quantization, 204
pruning, 204

model performance comparison, 68
model reliability, 21
model robustness, 175
model selection, 61
model training, 202

Adam optimizer, 202
categorical cross-entropy loss, 202

model transparency, 10
model tuning, 176

SGD with Momentum, 176
model validation, 48, 96
MRI, see magnetic resonance imaging
multilanguage translation, 167
multimodal approach, 56, 171
multimodal fusion, 175
multimodal inputs, 204
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multimodal learning, 173, 174
multi-omics data integration, 96
multiscale gradient vector flow, 113

snakes algorithm, 112
multispectral images, 268
multistage CNN architecture, 201
musculoskeletal ultrasound, 109

N

naïve Bayes, 28, 30, 40, 139
natural language processing, 10, 73, 256

disease normalization, 10
drug mapping, 10
entity mapping, 10
named entity recognition, 10
relation extraction, 10

NB, see naïve Bayes, 28, 30, 40, 139
network analysis, 90 – 92, 97

biological organization levels, 90
network-in-network architecture, 120, 121, 127
neural models, 81, 82
neural network(s), 5 – 7, 28

architectures, 197
artificial, 110
components, 6
fully connected layers, 118
layers, 7
sentiment analysis applications, 247

neurodegenerative diseases, 69
neurofuzzy inference ensembles, 28
neuroimaging techniques, 54, 56

MRI, 54
PET, 54, 57

neurons, 6
NLP, see natural language processing
noninvasive sensors, 237
nonlocal patch-based techniques, 267

O

OASIS dataset, 55, 56
OCR, see Optical Character Recognition
opinion analysis, 74
OPOD (patch-wise classification),  

264, 265
optical character recognition, 161 – 163

accuracy, 168
cloud solutions, 163
evaluation metrics, 163
feature recognition, 162
implementation approaches, 163
mechanism, 162
pattern recognition, 162

optimizers, 105
overfitting, 38, 48, 105, 106

mitigation strategies, 129

P

Parkinson’s disease, 27
prediction, 34

patch aggregation, 266
patch-based classification/classifier, 259 – 261, 265

APOD mode, 260
operational modes, 261
OPOD mode, 260

patch-based CNN, 264, 269, 270
components, 269
hierarchical patch embedding, 264
mathematical formalization, 270
review, 268

patch-based CNN models, 271 – 273, 277
advantages, 273
computational requirements, 272
limitations, 273, 274
sensitivity to patch size, 274

patch-based dictionaries, 259
patch-based discriminative learning, 261, 265
patch-based feature extraction, 260
patch-based image classification, 275

medical, 258
patch-based image processing, 266

components, 266
patch-based neural network algorithms, 274
patch-based nonlocal image processing, 266
patch-based pixel categorization, 263
patch-based SVM, 262
patch-based techniques, 259, 263

applications, 259
patch classification, 270
patch embedding, 269
patch extraction, 266, 268 – 270

image types, 267
patch matching, 266
patch representation, 266
patch sampling methodologies, 275
patch similarity measurements, 266
patch size, 262, 271, 272
pathway analysis, 91
patient engagement, 168, 238

security, 186
patient-generated privacy, 19
patient outcome prediction, 12, 21
patient-specific models, 16
PBC, see patch-based classifier
PBDL, see patch-based discriminative learning
PBPK models, 88, 89
performance analysis, 271
performance evaluation metrics, 15, 16, 44, 46, 

47, 80, 191 – 193, 200, 227, 229
accuracy, 29, 33, 35, 36, 39, 40, 42 – 46, 226, 227
AUC, 16, 44, 46, 103
confusion matrix, 39, 40, 46
F1 score, 16, 39, 46, 227
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loss, 226
precision, 46, 227
recall, 16, 46, 227
ROC curve, 35, 38 – 40, 42, 46
sensitivity, 42, 103
specificity, 103

personal health information, 17
personalized medicine, 19, 92, 95 – 97, 241, 242
pharmaceutical research

AI applications, 236
pharmacokinetic models/modeling, 86

population-based, 89
pharmacokinetic/pharmacodynamic models, 

87 – 90, 97
compartmental models, 88
physiologically based pharmacokinetic models, 88

pharmacovigilance, 95
PIP-Net (patch-based intuitive prototypes 

network), 261, 264
PK/PD models, see pharmacokinetic/

pharmacodynamic models
pooling layer(s), 59, 116, 117, 224
population PK models, 89
positron emission tomography, 136
power spectral density, 215
PR curve, 66
precision dosing, 95
precision-recall curves, 67
precision segmentation, 128
precontemplation stage, 147
predictive analytics, 236
predictive insights, 150
predictive models/modeling

antagonistic effects, 91
challenges, 96
clinical applications, 94
drug development applications, 95
drug interactions, 99
EHR-based, 3
HDIs, 86
for herbal-drug interactions, 85, 92, 97
personalized medicine applications, 95
pharmacovigilance applications, 95
synergistic effects, 91

predictive systems, 24
preparation stage, 147
preprocessing EHR data, 13

normalization, 13
standardization, 13

preprocessing techniques
data-specific, 14

prescription decoding, 161
pretrained CNN models, 111
pre-trained models, 100, 101
pretraining, SSL layers, 176
principal component analysis, 43
privacy

and data security, 239
healthcare data, 20

medical imaging data, 142
regulations, 18

process of change, 145
prosthetics, 216
protected health information, 141, 142
prototype model, 197

for skin disease detection, 198, 199
workflow, 202

proximal interphalangeal (PIP) joints, 109
public health

AI response capabilities, 234
Python (software), 42, 46 – 48

implementation tool, 43

Q

QNN(s), see quantum neural network(s)
QoS, see quality of service
quality of service, 181, 185, 188

challenges, 181
quantifying medical imaging data, 141
quantum computing, 124, 125, 128

quantum neural networks, 128
quantum SVMs, 128

quantum machine learning, 124
quantum neural network(s), 124 125
quantum SVM, 125
questionnaire design, 151

R

RA, see rheumatoid arthritis
radiology

AI applications, 110
random forest, 28, 30, 31, 36, 37, 39, 40, 42, 46, 87
random subspace ensemble, 38
Raspberry Pi, 211
real-time data analysis, 237
real-time data processing, 215
real-time EHR data analysis, 9
recurrent neural networks, 10, 11, 247, 249

Bi-RNNs, 249
region-based active contour(s), 126

segmentation, 112, 125
region of interest, 138
rehabilitation

AI applications, 238, 239
activation function, 116
layer, 224

remote care services, 242
remote healthcare, 203
remote patient monitoring, 237
representation learning, 5
research challenges, 248
research gaps, 48

CNN models, 273
research methodology, 189

healthcare smart contracts, 188
residual connections, 59, 172
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ResNet, 66, 68, 123
architecture, 123
model, 64
PR curve, 67
ResNet18, 123, 125
ResNet-101, 221
skip connections, 123

ResNet50, 54, 59, 60, 101, 123, 125, 172, 173
vanishing gradient solution, 59

RF, see random forest
rheumatoid arthritis, 109, 110, 130, 133

classification, 116, 118, 119, 123
classification models, 121, 122
diagnosis, 130
diagnostic criteria, 109
image segmentation, 112
imaging methods, 109

rheumatoid arthritis detection, 117, 120, 128
automated, 131
CNN-transformer models, 124
methods, 115, 127
quantum algorithms, 125
techniques, 111

RNNs, see recurrent neural networks
robotics in rehabilitation, 238
ROC curve, 64 – 66, 228

S

SBC, see social and behavior change
scalability, 183, 184, 203

smart contracts, 190
scale variations

handling in patch-based models, 274
sclera-periocular image processing, 263
SE, see self-efficiency
security mechanisms, 18
security practices, 17
segmentation, 138

clustering, 138
deep learning-based, 138
DenseUNet, 128
MultiResUNet, 128
region-based CNNs, 128
thresholding, 138

self-attention mechanisms, 124, 164, 262
self-efficiency, 145
self-explaining neural networks, 239
self-supervised learning, 171, 173, 177

contrastive learning, 173, 174
data challenges, 177
layer functionality, 174, 175
pretext task generation, 173

sentiment analysis, 73, 74, 81, 82, 248
aspect-based, 248, 251
challenges, 73, 78
datasets, 80
fine-grained, 248
methods, 76

model selection, 250
types, 74

sentiment classification, 73
analysis, 83

shallow neural network, 100
signal acquisition, 214
signal processing, 214, 215

in brain-controlled systems, 216
brain signals, 212

single-photon emission computed tomography, 
136

skin cancer, 219, 220
benign tumors, 219
classification, 220, 222
dataset augmentation, 223
detection, 226, 260
diagnosis, 229, 230
evaluation, 227, 231
malignant melanoma, 219

skin cancer classification, 221
CNN models, 261

skin disease(s), 198
detection, 197, 199, 200, 204, 205, 209

skin-mounted smart gait sensors, 238
smart contracts, 181, 182, 184 – 186, 188, 193, 195

advanced security enhancements, 194
automation benefits, 192
challenges in healthcare, 183
components, 181
compression techniques, 190, 192 – 194
enhanced security, 192
healthcare applications, 181, 185 – 187
interoperability, 190
performance evaluation, 189
process flow, 181
QoS (quality of service), 184, 189
research methodology, 190
security analysis, 189
security enhancements, 190
security vulnerabilities, 193

SMOTE (synthetic minority over-sampling 
technique), 31

social and behavior change
models, 146
theories, 144

SoftMax, 120
activation function, 116

software tools
Python, 34
WEKA, 34

SqueezeNet, 122, 127
SSAE, see stacked sparse autoencoder
SSL, see self-supervised learning
stacked sparse autoencoder, 263
stages of change, 146, 151 – 153, 155
standardization

datasets and reporting, 96
super-resolution, 140
supervised learning, 33
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support vector machine(s), 28, 30, 36, 39, 40, 46, 
48, 86, 114, 115, 139

enhanced radial bias kernel, 39
two-class classifier, 115

SVM-RFE, 42
SVM(s), see support vector machine(s)
system interoperability, 240

T

tailored sentiment analysis, 75
target context-specific LSTM, 253
technical challenges

AI implementation, 239
telemedicine, 203, 241
telesurgery, 186, 187
TensorFlow, 20, 28, 62, 105
texture analysis, 141
three-layer framework, 106

benign or malignant classification, 106
calcifications and masses differentiation, 106
ROI extraction, 106

thyroid disease prediction, 37, 40
traditional CNN models, 271

comparison with patch-based models, 274
traditional machine learning models, 165
training cycles, 176
transfer learning, 32, 55, 101, 103, 118, 120, 128, 

130, 177, 219, 225, 226, 260, 272, 275
domain-specific pretraining, 128
as feature extractor, 221
fine tuning, 225

transfer learning framework, 231
skin cancer evaluation, 233

transformer-based models, 247
transformers, 164, 236, 249

vision transformers, 128
translation models

healthcare applications, 166
transparency, 239
transtheoretical model, 144, 145, 147 – 149, 151, 

152 – 154, 157
stages of change, 144, 147, 154
variables, 147

transtheoretical model of change, 155
application, 155

TTM, see transtheoretical model
tumor detection

patch-based approaches, 265

U

UCI repository datasets, 37
ultrasound imaging, 136
U-Net, 8, 114, 130, 138

segmentation, 125
U-Net architecture, 113

contracting pathway, 113
expansive pathway, 113

V

validation loss, 106
validation techniques, 93
vanishing gradient problem, 11
vector algorithms, 75, 77, 78
vector process, 81
vertebrae segmentation, 263
VGG, 120

architecture, 121
VGG16, 120, 127
VGG19, 120

VGGNet, 221
virtual patient care, 238
virtual reality, 239
vision transformer(s), 124, 171, 172, 177, 236

architecture, 225
computational challenges, 177
model architecture, 175
modules, 174
self-attention mechanism, 172, 174
ViT-B1, 228
ViT-B16, 225 – 227

ViT(s), see vision transformer(s)
VR, see virtual reality

W

wearable devices, 237
smartwatches, 237

wearable smart devices, 241, 242
wearable technology

rehabilitation, 238
WER, see word error rate
wheelchair control

brain-controlled, 216
Word2Vec, 77
word embedding, 252
word error rate, 164
workflow, 200
working model of brain-controlled Arduino 

robot, 213

X

XGB, see extreme gradient boosting
X-ray imaging

COVID-19 detection, 43
X-rays, 136

Y

YOLOv3, 125
YOLOv4, 127
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